Skip to main content

Does Exercise Influence the Differentiation of Lobster Muscle?

  • Chapter
Locomotion and Energetics in Arthropods

Abstract

When use of a vertebrate skeletal muscle is prevented by denervation, it leads to a variety of pathologic changes including a reduction in membrane resting potential, increase in specific membrane resistance, occurrence of fibrillation potentials, spread of acetylcholine sensitivity and of receptors to extrajunctional sites, and atrophy of fibers (reviewed by Gutmann, 1976). Some of these changes may be reduced or even reversed if the denervated muscle is electrically stimulated, thus underscoring the fact that neural activity controls muscle fiber properties. However, since the onset of some pathologic changes in the denervated muscle correlated closely with the length of the distal nerve stump, a non-impulse mediated, neurotrophic factor, whose rate of depletion depends on the length of the distal stump, is also implicated in the regulation of muscle. Denervation therefore illustrates the influence of nerve activity and neurotrophic factors in the determination and maintenance of muscle fiber properties. There are other experimental approaches apart from denervation, which illustrate and amplify activity-related and neurotrophic influences on vertebrate muscle (see reviews by Guth 1968, 1969; Harris, 1974; Gutmann, 1976). These reviews emphasize the interacting nature of activity and neurotrophic influences and the inherent difficulty in separating them in order to study their mechanisms. Since most of this work is with vertebrate and in particular mammalian muscle which is innervated by a large number of neurons, an alternative approach is to examine an invertebrate and in particular a crustacean muscle which is supplied by relatively few (1–6) motoneurons (Wiersma, 1955; Atwood, 1973, 1976; Govind and Atwood, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atwood, H.L. 1973. An attempt to account for the diversity of crustacean neuromuscular systems. Amer. Zool. 13, 357–378.

    Google Scholar 

  • Atwood, H.L., Govind, C.K. and Bittner, G.D. 1973. Ultrastructure of nerve terminals and muscle fibers in denervated crayfish muscle. Z. Zellforsch. 146, 155–165.

    Article  CAS  Google Scholar 

  • Bittner, G.D. 1968. The differentiation of crayfish muscle fibers during development. J. Exp. Zool. 167, 439–456.

    Article  Google Scholar 

  • Bittner, G.D. 1973. Trophic dependence of fiber diameter in a crustacean muscle. Exp. Neurol. 41, 63–75.

    Google Scholar 

  • Boone, L.P. and Bittner, G.D. 1974. Morphological and physiological measures of trophic dependence in a crustacean muscle. J. Comp. Physiol. 89, 123–144.

    Article  Google Scholar 

  • Botero, L. 1980. Substrate selection and settling behaviour of larval lobsters, Homarus americanus Milne Edwards. M.A. Thesis, Boston University.

    Google Scholar 

  • Cole, J.J. 1980. Embryonic development of a neuromuscular system in the lobster, Homarus americanus. Ph.D. Thesis, Boston University.

    Google Scholar 

  • Costello, W.J. and Lang, F. 1979. Development of the dimorphic claw closer muscles of the lobster Homarus americanus. IV. Changes in functional morphology during growth. Biol. Bull. 156, 179–195.

    Article  Google Scholar 

  • Costello, W.J. Hill, R.H. and Lang, F. 1981. Innervation patterns of fast and slow motor neurons during development of a lobster neuromuscular system. J. Exp. Biol. 91, 271–284.

    Google Scholar 

  • Costello, W.J., Hill, R.H. and Lang, F. 1981. Reflex closure in the dimorphic claws of the lobster. (Manuscript submitted).

    Google Scholar 

  • Crane, J. 1975. Fiddler crabs of the world (Ocypodidae: genus Uca). Princeton University Press, Princeton, (736 pp.).

    Google Scholar 

  • Drachman, D.B. and Witzke, F. 1972. Trophic regulation of acetylcholine sensitivity of muscle: Effect of electrical stimulations. Science, Wash. 176, 514–516.

    Article  CAS  Google Scholar 

  • Emmel, V.E. 1908. The experimental control of asymmetry at different stages in the development of the lobster. J. Exp. Zool. 5, 471–484.

    Article  Google Scholar 

  • Gauthier, G.F., Lowey, S. and Hobbs, A.W. 1978. Fast and slow myosin in developing muscle fibers. Nature, Lond. 274, 25–29.

    Article  CAS  Google Scholar 

  • Goudey, L.R. and Lang, F. 1974. Growth of crustacean muscle: asymmetric development of the claw closer muscles in the lobster, Homarus americanus. J. Exp. Zool. 189. 421–427.

    Article  PubMed  CAS  Google Scholar 

  • Govind, C.K. and Atwood, H.L. 1981. “Organization of neuromuscular systems,” in: The Biology of Crustacea, ( H.L. Atwood and D.C. Sanderman, eds.), Academic Press, New York.

    Google Scholar 

  • Govind, C.K. and , K.S. 1981. Impulse mediated muscle tension transforms fast fibers to slow during development of lobster claw closer muscles. (Manuscript submitted).

    Google Scholar 

  • Govind, C.K. and Lang, F. 1974. Neuromuscular analysis of closing in the dimorphic claws of the lobster, Homarus americanus. J. Exp. Zool. 190, 281–288.

    Article  PubMed  CAS  Google Scholar 

  • Govind, C.K. and Lang, F. 1978. Development of the dimorphic claw closer muscles of the lobster, Homarus americanus. III. Transformation to dimorphic muscles in juveniles. Biol. Bull. 154, 55–67.

    Article  Google Scholar 

  • Govind, C.K. and Lang, F. 1979. Physiological asymmetry in the bilateral crusher claws of a lobster. J. Exp. Zool. 297, 27–32.

    Article  Google Scholar 

  • Govind, C.K. and Lang, F. 1980. Identification and asymmetry of lobster claw motoneurons. Neurosci. Abstr. 6, 370.

    Google Scholar 

  • Govind, C.K. and Lang, F. 1981. Physiological identification and asymmetry of lobster claw closer motoneurons. J. Exp. Biol. (In press).

    Google Scholar 

  • Govind, C.K., Atwood, H.L. and Lang, F. 1973. Synaptic differentiation in a regenerating crab-limb muscle. Proc. Natl. Acad. Sci. USA, 70, 822–826.

    Article  PubMed  CAS  Google Scholar 

  • Govind, C.K., Atwood, H.L. and Lang, F. 1974. Sarcomere length increases in developing crustacean muscle. J. Exp. Zool. 189, 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Govind, C.K., She, J. and Lang, F. 1977. Lengthening of lobster muscle fibers by two age-dependent mechanisms. Experientia, Basel. 33, 35–36.

    Article  CAS  Google Scholar 

  • Govind, C.K., Stephens, P.J. and Trinkaus-Randall, V. 1981. Differences in motor output and fiber composition of the opener muscle in lobster dimorphic claws. J. Exp. Zool. (In press).

    Google Scholar 

  • Guth, L. 1968. “Trophic” influences of nerve on muscle. Physiol. Rev. 48, 645–687.

    PubMed  CAS  Google Scholar 

  • Guth, L. 1969. “Trophic” effects of vertebrate neurons. Neurosci. Res. Progr. Bull. 7, 1–73.

    Google Scholar 

  • Gutmann, E. 1976. Neurotrophic relations. Ann. Rev. Physiol. 38, 177–216.

    Article  CAS  Google Scholar 

  • Hajek, J., Chari, N., Bass, A. and Gutmann, E. 1973. Differences in contractile and some biochemical properties between fast and slow adbominal muscles of the crayfish (Astacus leptodactylus). Physiol. Bohemslov. 22, 603–612.

    CAS  Google Scholar 

  • Hamilton, P.V., Nishimoto, R.T. and Halusky, J.G. 1976. Cheliped laterality in Callinectes sapidus (Crustacea: Portunidae). Biol. Bull. 150, 393–401.

    Article  CAS  Google Scholar 

  • Harris, A.J. 1974. Inductive functions of the nervous system. Ann. Rev. Physiol. 36, 251–305.

    Article  CAS  Google Scholar 

  • Herrick, F.H. 1895. The American lobster: a study of its habits and development. Fish. Bull. U.S. 15, 1–252.

    Google Scholar 

  • Herrick, F.H. 1911. Natural history of the american lobster. U.S. Bur. Fish. 29, 149–408.

    Google Scholar 

  • Hughes, J.T., Schleser, R.A. and Tchobanoglous, G. 1974. A rearing tank for lobster larvae and other aquatic species. Prog. Fish. Cult. 36, 129–132.

    Google Scholar 

  • Jahromi, S.S. and Atwood, H.L. 1971. Structural and contractile properties of lobster leg muscle fibers. J. Exp. Zool. 176, 475–486.

    Article  PubMed  CAS  Google Scholar 

  • Jahromi, S.S. and Bloom, J.W. 1980. Structural changes in locust leg muscle fibers in response to tenotomy and joint immobilization. J. Insect. Physiol. 25, 767–780.

    Article  Google Scholar 

  • Jahromi, S.S. and Charlton, M.P. 1978. Transverse sarcomere splitting: a possible means of longitudinal growth in crab muscle. J. Cell. Biol. 80, 736–742.

    Article  Google Scholar 

  • Jones, R. and Vrbova, G. 1974. Two factors responsible for denervation hypersensitivity. J. Physiol. Lond. 236, 517–538.

    PubMed  CAS  Google Scholar 

  • Kent, J.S. 1979. Trophic influences on the differentiation of claw closer muscles of the lobster Homarus americanus. M.A. Thesis, Boston University.

    Google Scholar 

  • Kent, K.S. and Govind, C.K. 1981. Two types of tonic fibers in lobster muscle based on enzyme histochemistry. J. Exp. Zool. 215, 113–116.

    Article  CAS  Google Scholar 

  • King, J.A. and Govind, C.K. 1980. Development of excitatory innervation in lobster claw closer muscle. J. Comp. Neurol. 194, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Lang, F. 1975. A simple culture system for juvenile lobsters. Aquaculture 6, 389–393.

    Article  Google Scholar 

  • Lang, F., Costello, W.J. and Govind, C.K. 1977a. Development of the dimorphic claw closer muscles of the lobster Homarus americanus. I. Distribution of fiber types in adults. Biol. Bull. 152, 75–83.

    Article  CAS  Google Scholar 

  • Lang, F., Govind, C.K. and She, J. 1977b. Development of the dimorphic claw closer muscles of the lobster, Homarus americanus. II. Distribution of muscle fiber types in larval forms. Biol. Bull. 152, 382–391

    Article  Google Scholar 

  • Lang, F., Govind, C.K., Costello, W.J. and Greene, S.I. 1977c. Developmental neuroethology: changes in escape and defensive behavior during growth of the lobster. Science, Wash. 197, 682–285.

    Article  CAS  Google Scholar 

  • Lang, F., Govind, C.K. and Costello, W.J. 1978. Experimental transformation of muscle fiber properties in lobster. Science Wash. 201, 1037–1039.

    Article  CAS  Google Scholar 

  • Lang, F., Ogonowski, M.M., Costello, W.J., Hill, R., Roehrig, B., Kent, K. and Sellers, J. 1980. Neurotrophic influence on lobster skeletal muscle. Science, Wash. 207, 325–327.

    Article  CAS  Google Scholar 

  • Lehman, W. and Szent-Gyorgi, A.G. 1975. Regulation of muscular contraction: distribution of actin control and myosin control in the animal kingdom. J. Gen. Physiol. 66, 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Lomo, T. and Rosenthal, J. 1972. Control of acetylcholine sensitivity by muscle activity in the rat. J. Physiol. Lond. 221, 439–513.

    Google Scholar 

  • Lomo, T. and Westgaard, R.H. 1974. Contractile properties of muscle: control by pattern of muscle activity in the rat. Proc. Roy. Soc. Lond. B. 187, 99–103.

    Article  CAS  Google Scholar 

  • Lutz, H., Weber, H., Billeter, R. and Jenny, E. 1979. Fast and slow myosin within single skeletal muscle fibers of adult rats. Nature, Lond. 281, 142–144.

    Article  CAS  Google Scholar 

  • Macagno, E.R. 1977. “Abnormal synaptic connectivity following UV-induced cell death during Daphnia development,” in: Cell and Tissue Interactions, (J.W. Lash and M.M. Burger, eds.), Raven Press, New York (293–309).

    Google Scholar 

  • Melichna, J. and Gutmann, E. 1974. Stimulation and immobilization effects on contractile and histochemical properties of denervated muscle. Pflug. Archiv. 352, 165–178.

    CAS  Google Scholar 

  • Mellon, De F. Jr. and Stephens, P.J. 1978. Limb morphology and function are transformed by contralateral nerve section in snapping shrimps. Nature, Lond. 272, 246–248.

    Article  Google Scholar 

  • Mellon, De F. Jr. and Stephens, P.J. 1980. Modifications in the arrangement of thick and thin filaments in transforming shrimp muscle. J. Exp. Zool. 213, 178–179.

    Article  Google Scholar 

  • Neil, D.M., MacMillan, D.L., Robertson, R.M. and Laverack, M.S. 1976. The structure and function of the thoracic exopodites in the larvae of the lobster Homarus gammarus L. Phil. Trans. Roy. Soc. Lnd. B. 274, 53–68.

    CAS  Google Scholar 

  • Ogonowski, M.M., Lang, F. and Govind, C.K. 1980. Histochemistry of lobster claw closer muscles during development. J. Exp. Zool. 213, 359–367.

    Article  CAS  Google Scholar 

  • Pascoe, N. 1977. Muscle fiber types in regenerating claws of the lobster Homarus americanus. Amer. Zool. 17, 971.

    Google Scholar 

  • Pascoe, N. 1978. Histochemistry of regenerating claw muscles of the lobster, Homarus americanus. Biol. Bull. 154, 470.

    Google Scholar 

  • Perkins, H.C. 1972. Development rates at various temperatures of embryos of the northern lobster (Homarus americanus Milne Edwards). Fish. Bull. U.S. 70, 95–99.

    Google Scholar 

  • Pette, D. and Schnez, U. 1977. Coexistence of fast and slow type myosin light chains in single muscle fibers during transformation as induced by long term stimulation. FEBS Lett. 83, 128–130.

    Article  PubMed  CAS  Google Scholar 

  • Pette, D., Smith, M.E., Staudte, H.W. and Vrbova, G. 1973. Effects of long-term electrical stimulation on some contractile and metabolic characteristics of rabbit muscles. Pflug. Archiv. 338, 257–272.

    CAS  Google Scholar 

  • Rees, D. and Usherwood, P.N.R. 1972. Effects of denervation on the ultrastructure of insect muscle. J. Cell. Sci. 10, 667–682.

    PubMed  CAS  Google Scholar 

  • Rubinstein, N.A. and Holtzer, H. 1979. Fast and slow muscle in tissue culture synthesize only fast myosin. Nature, Lond. 280, 323–325.

    Article  CAS  Google Scholar 

  • Rubinstein, N., Pepe, F. and Holtzer, H. 1977. Myosin types during the development of embryonic chicken fast and slow muscles. Proc. Natl. Acad. Sci. USA 74, 4524–4527.

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein, N., Mabuchi, K., Pepe, F., Salmons, S., Gergely, J. and Sreter, F. 1978. Use of type-specific antimyosins to demonstrate the transformation of individual fibers in chronically stimulated rabbit fast muscles. J. Cell. Biol. 79, 252–261.

    Article  PubMed  CAS  Google Scholar 

  • Salmons, S. and Sreter, F. 1976. Significance of impulse activity in the transformation of skeletal muscle type. Nature, Lond. 263, 30–34.

    Article  CAS  Google Scholar 

  • Salmons, S. and Vrbova, G. 1969. The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J. Physiol. Lond. 201, 535–549.

    PubMed  CAS  Google Scholar 

  • Sreter, F., Gergely, J., Salmons, S. and Romanual, F. 1973. Synthesis by fast muscle of myosin light chains characteristic of slow muscle in response to long term stimulation. Nature, Lond. 241, 17–18.

    Google Scholar 

  • Stephens, P.J. and Mellon, De F. Jr. 1979. Modification of structure and synaptic physiology in transformed shrimp muscle. J. Comp. Physiol. 132, 97–108.

    Article  Google Scholar 

  • Trinkaus-Randall, V. and Mittenthal, J.E. 1978. Intra-and interspecific transplantation of limb buds in Crustacea: a new method for studying central and peripheral interactions in crustacean limbs. J. Exp. Zool. 204, 275–281.

    Article  Google Scholar 

  • Tweedle, C.D., Popiela, H. and Thornton, C.S. 1974. Ultrastructure of the development and subsequent breakdown of muscle in aneurogenic limbs (Ambystoma). J. Exp. Zool. 190, 155–166.

    Article  PubMed  CAS  Google Scholar 

  • Wiens, T.J. 1976. Electrical and structural properties of crayfish claw motoneurons in an isolated claw-ganglion preparation. J. Comp. Physiol. 112, 213–233.

    Article  Google Scholar 

  • Wiersma, C.A.G. 1955. “The neuromuscular system,” in: The Physiology of Crustacea. Vol. II, (T.H. Waterman, ed.), Academic Press, New York (191–240).

    Google Scholar 

  • Wilson, E.B. 1903. Notes on the reversal of asymmetry in the regeneration of chelae in Alpheus heterochelis. Biol. Bull. 4, 197–210.

    Article  Google Scholar 

  • Wood, M.R. and Usherwood, P.N.R. 1979a. Ultrastructural changes in cockroach leg muscle following unilateral neurotomy. I. Degeneration. J. Ultrastruct. Res. 68, 265–280.

    Article  CAS  Google Scholar 

  • Wood, M.R. and Usherwood, P.N.R. 1979b. Ultrastructural changes in cockroach leg muscle following unilateral neurotomy. H. Regeneration. J. Ultrastruct. Res. 68, 281–295.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Govind, C.K. (1981). Does Exercise Influence the Differentiation of Lobster Muscle?. In: Herreid, C.F., Fourtner, C.R. (eds) Locomotion and Energetics in Arthropods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4064-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4064-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4066-9

  • Online ISBN: 978-1-4684-4064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics