Skip to main content

Abstract

Insects are among the most successful of land-dwelling organisms; virtually no terrestrial community is without insects. This very extensive radiation throughout the spectrum of terrestrial environments indicates that insects have coped effectively with the most significant problem posed by this lifestyle, viz. dessication. Many, if not most, terrestrial environments are characterized by low relative humidities and, as a consequence, the activity of atmospheric water vapor is significantly less than the activity of tissue water. Thus, unless mechanisms for conservation of water are in place, significant water loss will cocur. Their small size and high surface to volume ratio exaggerate the problem of water loss in insects. In addition to behavioral adaptations, insects employ three structural adaptations to reduce dessication (Fig. 1). The outer surface of the insect cuticle is covered by a waxy layer which is largely impervious to water, the respiratory surfaces are internalized and, in all insects except those restricted to extremely humid environments, the openings of the respiratory system to the surrounding atmosphere can be kept closed except when gas exchange is actually taking place. The effectiveness of sealing off the openings of the respiratory system, i.e. the spiracles, and of the waxy cuticular coating in conserving water has been known for some years and has been demonstrated in a number of insect species (see e.g., Buck, 1962).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahearn, G.A. 1970. The control of water loss in desert tenebrionid beetles. J. Exp. Biol. 53, 575–595.

    Google Scholar 

  • Albrecht, F.O. 1953. The Anatomy of the Migratory Locust. Athlone Press, London.

    Google Scholar 

  • Barth, R.H., Jr. 1968. The mating behavior of Gromphadorhina portentosa (Schaum) (Blatteria, Blaberoídea, Blaberidae, Oxyhloinae): An anomalous pattern for a cockroach. Psyche 75, 124–131.

    Article  Google Scholar 

  • Beckel, W.E. 1958. The morphology and physiology of the spiracular regulatory apparatus of Hyalophora cecropia (L.) (Lepidoptera). Proc. X. Internat. Cong. Entomol. Vol. II, 87–115.

    Google Scholar 

  • Beckel, W.E. and Schneiderman, H.A. 1957. Insect spiracle as independent effector. Science 126, 352–353.

    Article  PubMed  CAS  Google Scholar 

  • Brockway, A.P. and Schneiderman, H.A. 1967. Strain-gauge transducer studies on intratracheal pressure and pupal length during discontinuous respiration in diapausing silkworm pupae. J. Insect Physiol. 13, 1413–1451.

    Article  Google Scholar 

  • Buck, J. 1962. Some physical aspects of insect respiration. Ann. Rev. Entomol. 7, 27–56.

    Article  Google Scholar 

  • Buck, J.B. and Keister, M. 1955. Cyclic CO2 releases in diapausing Agapema pupa. Biol. Bull. 109, 144–163.

    Article  Google Scholar 

  • Burkett, B.N. and Schneiderman, H.A. 1974. Roles of oxygen and carbon dioxide in the control of spiracular function in cecropia pupae. Biol. Bull. 147, 274–293.

    Article  CAS  Google Scholar 

  • Burrows, M. 1975. Co-ordinating interneurones of the locust which convey two patterns of motor command: their connexions with flight motoneurones. J. Exp. Biol. 63, 713–733.

    PubMed  CAS  Google Scholar 

  • Burrows, M. 1975. Co-ordinating interneurones of the locust which convey two patterns of motor command: their connexions with ventilatory motoneurones. J. Exp. Biol. 63, 735–753.

    PubMed  CAS  Google Scholar 

  • Burrows, M. 1978. Sources of variation in the output of locust spiracular motoneurones receiving common synaptic driving. J. Exp. Biol. 74, 175–186.

    PubMed  CAS  Google Scholar 

  • Case, J.F. 1956. Carbon dioxide and oxygen effects of the spiracles of flies. Physiol. Zool. 29, 163–171.

    CAS  Google Scholar 

  • Case, J.F. 1957. The median nerves and cockroach spiracular function. J. Insect. Physiol. 1, 85–94.

    Article  Google Scholar 

  • Fraenkel, G. 1932. Untersuchungen uber die Koordination van Reflexen und automatisch-nervosen Rhythmen bei Insekten. III. Das Problem des gerichteten Atemstromes in den Tracheen der Insekten. Z. Vergl. Physiol. 16, 418–443.

    Google Scholar 

  • Hamilton, A.G. 1964. The occurrence of periodic or continuous discharge of carbon dioxide by male desert locusts (Schistocerca gregaria Forskal) measured by an infra-red gas analyser. Proc. Roy. Soc. London B 160, 373–395.

    Article  CAS  Google Scholar 

  • Hazelhoff, E.H. 1927. Die reulierung der Atmung bei Insekten und Spinnen. Z. Vergl. Physiol. 5, 179–190.

    Google Scholar 

  • Hoyle, G.H. 1959. The neuromuscular mechanism of an insect spiracular muscle. J. Insect Physiol. 3, 378–394.

    Article  Google Scholar 

  • Hoyle, G.H. 1960. The action of carbon dioxide gas on an insect spiracular muscle. J. Insect Physiol. 4, 63–79.

    Article  Google Scholar 

  • Iles, J.F. 1971. Coxal depressor muscles of the cockroach and the role of peripheral inhibition. J. Exp. Biol. 55, 151–164.

    PubMed  CAS  Google Scholar 

  • Kaars, C. 1979. Neural control of homologous behavior patterns in two blaberid cockroaches. J. Insect Physiol. 25, 209–218.

    Article  Google Scholar 

  • Krafsur, E.S. 1971. Behavior of thoracic spiracles of Aedes mosquitoes in controlled relative humidities. Ann. Entomol. Soc. Amer. 64, 93–97.

    Google Scholar 

  • Krafsur, E.S. and Graham, C.L. 1970. Spiracular responses of Aedes mosquitoes to carbon dioxide and oxygen. Ann. Entomol. Soc. Amer. 63, 694–696.

    Google Scholar 

  • Krafsur, E.S., Williams, J.R., Graham, C.L. and Williams, R.E. 1970. Observations on spiracular behavior in Aedes mosquitoes. Ann. Entomol. Soc. Amer. 63, 684–691.

    PubMed  CAS  Google Scholar 

  • Lee, M.O. 1927. A note on the mechanism of respiration in Ortoptera. J. Exp. Zool. 53, 117–128.

    Google Scholar 

  • Levy, R.I. and Schneiderman, H.A. 1966. Discontinuous respiration in insects. II. The direct measurement and significance of changes in tracheal gas composition during the respiratory cycle of silkworm pupae. J. Insect. Physiol. 12, 83–104.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, G.W., Miller, P.L. and Mills, P.S. 1973. Neuro-muscular mechanisms of abdominal pumping in the locust. J. Exp. Biol. 59, 149–168.

    Google Scholar 

  • Loveridge, J.P. 1969. The control of water loss in Locusta migratoria migratoroides R. and F. II. Water loss through the spiracles. J. Exp. Biol. 49, 15–29.

    Google Scholar 

  • Miall, L.C. and Denny, A. 1886. The Structure and Life History of the Cockroach (Periplaneta orientalis). Lovell Reeve, London, 224 pp.

    Book  Google Scholar 

  • Miller, P.L. 1960a. Respiration in the desert locust. II. The control of the spiracles. J. Exp. Biol. 37, 237–263.

    CAS  Google Scholar 

  • Miller, P.L. 1960b. Respiration in the desert locust. III. Ventilation and the spiracles during flight. J. Exp. Biol. 37, 264–278.

    Google Scholar 

  • Miller, P.L. 1962. Spiracle control in adult dragonflies (Odonata). J. Exp. Biol. 39, 513–535.

    Google Scholar 

  • Miller, P.L. 1964a. Factors altering spiracle control in adult dragonflies: Water balance. J. Exp. Biol. 41, 331–343.

    CAS  Google Scholar 

  • Miller, P.L. 1964b. Factors altering spiracle control in adult dragonflies: Hypoxia and temperature. J. Exp. Biol. 41, 345–357.

    CAS  Google Scholar 

  • Miller, P.L. 1965. “The central nervous control of respiratory movements,” in: The Physiology of the Insect Central Nervous System. ( J.E. Treherne and J.W.L. Beament, eds.), Academic Press, London, 227 pp.

    Google Scholar 

  • Miller, P.L. 1969. Inhibitory nerves to insect spiracles. Nature, London 221, 171–173.

    Article  CAS  Google Scholar 

  • Miller, P.L. 1971. Rhythmic activity in the insect nervous sytem. I. Ventilatory coupling of a mantid spiracle. J. Exp. Biol. 54, 587–597.

    CAS  Google Scholar 

  • Miller, P.L. 1973. Spatial and temporal changes in the coupling of cockroach spiracles to ventilation. J. Exp. Biol. 59, 137–148.

    Google Scholar 

  • Miller, P.L. and Mills, P.S. 1976. “Some aspects of the development of breathing in the locust,” in: Perspectives in Experimental Biology, Vol. 1 Zoology, ( P.S. Davies, ed.) Pergamon, Oxford, 525 pp.

    Google Scholar 

  • Nelson, N.G. 1979. Sound production in the cockroach Gromphadorhina portentosa: The sound producing apparatus. J. Comp. Physiol. 132, 27–38.

    Article  Google Scholar 

  • Schneiderman, H.A. 1953. The discontinuous release of carbon dioxide by diapausing pupal insects. Anat. Rec. 117, 540.

    Google Scholar 

  • Schneiderman, H.A. 1956. Spiracular control of discontinuous respiration in insects. Nature, London 197, 1169–1171.

    Article  Google Scholar 

  • Schneiderman, H.A. 1960. Discontinuous respiration in insects: role of the spiracles. Biol. Bull. 119, 494–528.

    Article  Google Scholar 

  • Schneiderman, H.A. and Schechter, A.N. 1966. Discontinuous respiration in insects. V. Pressure and volume changes in the tracheal system of silkworm pupae. J. Insect. Physiol. 12, 1143–1170.

    Google Scholar 

  • Schneiderman, H.A. and Williams, C.M. 1955. An experimental analysis of the discontinuous respiration of the cecropia silkworm. Biol. Bull. 109, 123–143.

    Article  Google Scholar 

  • Snodgrass, R.E. 1935. Principles of insect morphology. McGraw-Hill, New York, 667 pp.

    Google Scholar 

  • Van der Kloot, W.G. 1963. The electrophysiology and nervous control of the spiracular muscle of pupae of the giant silkmoths. Comp. Biochem. Physiol. 9, 317–333.

    Google Scholar 

  • Weis-Fogh, T. 1964. Functional design of the tracheal system of flying insects as compared with the avian lung. J. Exp. Biol. 41, 207–228.

    CAS  Google Scholar 

  • Wigglesworth, V.B. 1953. Surface forces in the tracheal system of insects. Quart. Journ. Micr. Sci. 94, 507–522.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Kaars, C. (1981). Insects — Spiracle Control. In: Herreid, C.F., Fourtner, C.R. (eds) Locomotion and Energetics in Arthropods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4064-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4064-5_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4066-9

  • Online ISBN: 978-1-4684-4064-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics