Skip to main content

The Dynamics of Phase Separation Near the Critical Point: Spinodal Decomposition and Nucleation

  • Chapter
Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 73))

Abstract

It is useful to view phase separation as occurring either by nucleation or by spinodal decomposition. Nucleation is associated with metastability, i.e. the existence of an energy barrier and the occurrence of a rare but large energy fluctuation.1–4 Spinodal decomposition, on the other hand, refers to phase separation in an initially unstable system; one in which even the smallest fluctuation will grow because an energy barrier is negligible or zero.5–7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Frenkel, Kinetic Theory of Nucleation (Dover, New York, 1955) Ch VII.

    Google Scholar 

  2. A. C. Zettlemoyer (Ed.) Nucleation (Marcel Dekker, New York, 1969).

    Google Scholar 

  3. K. Binder and D. Stauffer, Adv. in Physics, 25, 343 (1976).

    Article  ADS  Google Scholar 

  4. F. F. Abraham, Homogeneous Nucleation Theory (Academic, New York, 1975).

    Google Scholar 

  5. J. W. Cahn, Trans. Metall. Soc. AIME 242, 166 (1968)

    Google Scholar 

  6. J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).

    Article  ADS  Google Scholar 

  7. J. S. Langer, in Fluctuations, Instabilities and Phase Transitions, edited by T. Riste (Plenum, New York, 1975) p. 19.

    Google Scholar 

  8. K. Binder, Lecture Notes for the VIth International School on Statistical Mechanics, Sitges, June 1980 (unpublished).

    Google Scholar 

  9. K. Binder, C. Billotet, and P. Mirold, Z. Physik B30, 183 (1978).

    ADS  Google Scholar 

  10. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford, New York, 1971).

    Google Scholar 

  11. See for example, Mechanism of Phase Transformation in Crystalline Solids, No. 33 (Institute of Metals Monograph Series, London, 1969).

    Google Scholar 

  12. V. Gerold and J. Kostortz, J. Appl. Cryst. 11, 376 (1978).

    Article  Google Scholar 

  13. P. C. Martin, in Many Body Physics, edited by C. DeWitt and R. Balian (Gordon and Breach, New York, 1968).

    Google Scholar 

  14. K. Kawasaki, M.C. Yalabik and J.D. Gunton, Phys. Rev. A17, 455 (1978)

    ADS  Google Scholar 

  15. C. Billotet and K. Binder, Z. Phys. B32, 195 (1979).

    Google Scholar 

  16. P. C. Hohenberg and D. R. Nelson, Phys. Rev. B20, 2665 (1980).

    ADS  Google Scholar 

  17. W. I. Goldburg and J. S. Huang, in Fluctuations, Instabilities, and Phase Transitions, edited by T. Riste (Plenum, New York, 1975) p. 87.

    Google Scholar 

  18. J. C. LeGuillou and J. Zinn-Justin, Phys. Rev. B21, 3976 (1980).

    MathSciNet  ADS  Google Scholar 

  19. R. G. Howland, N. C. Wong, and C. M. Knobler, J. Chem. Phys. 73, 522 (1980).

    Article  ADS  Google Scholar 

  20. A. B. Bortz, M. Kalos, J. Lebowitz, and M. Zendejas, Phys. Rev. B10, 535 (1974).

    ADS  Google Scholar 

  21. J. Marro, A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, Phys. Rev. B12, 2000 (1975).

    ADS  Google Scholar 

  22. K. Binder, M. H. Kalos, J. L. Lebowitz, and J. Marro, Adv. Coll. Interface Sci. 10, 173 (1979).

    Article  Google Scholar 

  23. K. Binder, Phys. Rev. B15, 4425 (1977).

    ADS  Google Scholar 

  24. N. C. Wong and C.M. Knobler, Phys. Rev. Lett. 43, 1733 (1979).

    Article  ADS  Google Scholar 

  25. J. S. Langer, M. Baron, and H. D. Miller, Phys. Rev. All, 1417 (1975).

    Google Scholar 

  26. K. Kawasaki and T. Ohta, Prog.Theor. Phys. 59, 362 (1978).

    Article  ADS  Google Scholar 

  27. K. Binder and D. Stauffer, Phys. Rev. Lett. 33, 1006 (1974).

    Article  ADS  Google Scholar 

  28. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961).

    Article  ADS  Google Scholar 

  29. J. S. Langer, Ann. Phys. (N.Y.) 65, 53 (1971).

    Article  ADS  Google Scholar 

  30. M. R. Murzik, F. F. Abraham and G. M. Pound, J. Chem. Phys. 69, 3462 (1978).

    Article  ADS  Google Scholar 

  31. F. F. Abraham, Phys. Repts. 53, 93 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  32. N. C. Wong and C. M. Knobler, J. Chem. Phys, 69, 725 (1978).

    Article  ADS  Google Scholar 

  33. W. I. Goldburg, C. H. Shaw, J. S. Huang and M. S. Pilant, J. Chem. Phys. 68, 484 (1978).

    Article  ADS  Google Scholar 

  34. Y. C. Chou and Walter I. Goldburg, Phys. Rev. A20, 2105 (1979).

    ADS  Google Scholar 

  35. W. I. Goldburg, A. J. Schwartz, and M. W. Kim, Prog. Theor. Phys. Suppl. No. 64, 477 (1978).

    Google Scholar 

  36. E. D. Siggia, Phys. Rev. A20, 595 (1979).

    ADS  Google Scholar 

  37. J. W. Cahn and M. R. Moldover (unpublished).

    Google Scholar 

  38. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973).

    Article  ADS  Google Scholar 

  39. K. Binder, Solid State Comm. 34, 191 (1980).

    Article  ADS  Google Scholar 

  40. J. Marro, J. L. Lebowitz and M. H. Kalos, Phys. Rev. Lett. 43, 282 (1979).

    Article  ADS  Google Scholar 

  41. Y. C. Chou and W. I. Goldburg, Phys. Rev. A23, 858 (1981).

    ADS  Google Scholar 

  42. A. J. Schwartz (unpublished).

    Google Scholar 

  43. H. Furukawa, Phys. Rev. Lett. 43, 136 (1979).

    Article  ADS  Google Scholar 

  44. J. S. Langer and L. A. Turski, Phys. Rev. A8, 3230 (1973).

    ADS  Google Scholar 

  45. J. S. Huang, W. I. Goldburg and M. R. Moldover, Phys. Rev. Lett. 34, 639 (1975).

    Article  ADS  Google Scholar 

  46. D. Dahl and M. R. Moldover, Phys. Rev. Lett. 27, 1421 (1973).

    Article  ADS  Google Scholar 

  47. R. B. Heady and J. W. Cahn, J. Chem. Phys. 58, 896 (1973).

    Article  ADS  Google Scholar 

  48. A. J. Schwartz, S. Krishnamurthy and W. I. Goldburg, Phys. Rev. A21, 1331 (1980).

    ADS  Google Scholar 

  49. K. Kawasaki, Ann. Phys. (New York), 61, 1 (1970).

    Article  ADS  Google Scholar 

  50. J. S. Langer and A. J. Schwartz, Phys. Rev.A21, 948 (1980).

    MathSciNet  ADS  Google Scholar 

  51. S. Krishnamurthy and W. I. Goldburg, Phys. Rev. A22, 2147 (1980).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Goldburg, W.I. (1981). The Dynamics of Phase Separation Near the Critical Point: Spinodal Decomposition and Nucleation. In: Chen, SH., Chu, B., Nossal, R. (eds) Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems. NATO Advanced Study Institutes Series, vol 73. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4061-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4061-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4063-8

  • Online ISBN: 978-1-4684-4061-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics