Skip to main content

Fluorescent-Probe Studies of Contractile Proteins

  • Chapter
Cell and Muscle Motility

Abstract

The present knowledge of the mechanism of muscle contraction and cell movement at the molecular level comes from an accumulation of experimental evidence obtained using a wide variety of biochemical and biophysical techniques. In relatively recent times, the use of intrinsic and extrinsic fluorescence probes has provided useful information about the kinetic intermediates, mobility, binding, orientation, intramolecular distances, and site environment of the globular head region of the myosin molecule, both free in solution and as a part of the intact muscle “cross-bridges” that are thought to be the impellers of biological movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aranson, J., and Morales, M. F., 1969, Polarization of tryptophan fluorescence in muscle, Biochemistry 8:4512.

    Google Scholar 

  • Belford, G. G., Belford, R. L., and Weber, G., 1972, Dynamics of fluorescence polarization in macromolecules, Proc. Natl. Acad. Sci. U.S.A. 69:1392.

    Article  Google Scholar 

  • Borejdo, J., and Putnam, S., 1977, Polarization of fluorescence from single skinned glycerinated rabbit psoas fibers in rigor and relaxation, Biochim. Biophys. Acta 459:578.

    Article  Google Scholar 

  • Borejdo, J., Putnam, S., and Morales, M. F., 1979, Fluctuations in polarized fluorescence: Evidence that muscle cross bridges rotate repetitively during contraction, Proc. Natl. Acad. Sci. U.S.A. 76:6346.

    Article  Google Scholar 

  • Cooke, R., 1981, Fluorescence as a probe of contractile systems, Methods Enzymol. (in press).

    Google Scholar 

  • Dos Remedios, C. G., Millikan, R. G. C., and Morales, M. F., 1972, Polarization of tryptophane fluorescence from single striated muscle fibers, J. Gen. Physiol. 59:103.

    Article  Google Scholar 

  • Duke, J., Takashi, R., Ue, K., and Morales, M. F., 1976, Reciprocal reactivities of specific thiols when actin binds to myosin, Proc. Natl. Acad. Sci. U.S.A. 73:302.

    Article  Google Scholar 

  • Ehrenberg, M., and Rigler, R., 1972, Polarized fluorescence and rotational Brownian motion, Chem. Phys. Lett. 14:539.

    Article  Google Scholar 

  • Elliott, A., and Offer, G., 1978, Shape and flexibility of the myosin molecule, J. Mol. Biol. 123:505.

    Article  Google Scholar 

  • Gratzer, W. B., and Lowey, S., 1969, Effect of substrate on conformation of myosin, J. Biol. Chem. 244:22.

    Google Scholar 

  • Harvey, S. C., and Cheung, H. C., 1980, Transport properties of particles with segmental flexibility. II. Decay of fluorescence polarization anisotropy from hinged macromolecules, Biopoly-mers 19:913.

    Article  Google Scholar 

  • Haselgrove, J. C., 1975, X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscles, J. Mol. Biol. 92:113.

    Article  Google Scholar 

  • Highsmith, S., Mendelson, R. A., and Morales, M. F., 1976, Affinity of myosin S-l for F-actin, measured by time-resolved fluorescence anisotropy, Proc. Natl. Acad. Sci. U.S.A. 73:133.

    Article  Google Scholar 

  • Holmes, K. C., Tregear, R. T., and Barrington Leigh, J., 1980, Interpretation of low angle x-ray diffraction from insect flight muscle in rigor, Proc. R. Soc. London Ser. B 207:13.

    Article  Google Scholar 

  • Hudson, E., and Weber, G., 1973, The synthesis and characterization of two fluorescent sulfhy-dryl reagents, Biochemistry 12:4154.

    Article  Google Scholar 

  • Huxley, A. F., and Niedergerke, H., 1954, Structural changes in muscle during contraction: Interference microscopy of living muscle fibers, Nature (London) 173:971.

    Article  Google Scholar 

  • Huxley, A. F., and Simmons, R. M., 1971, Proposed mechanism of force generation in striated muscle, Nature (London) 233:533.

    Article  Google Scholar 

  • Huxley, H. E., 1957, The double array of filaments in cross-striated muscle, J. Biophys. Biochem. Cytol. 3:631.

    Article  Google Scholar 

  • Huxley, H. E., 1960, Muscle cells, in: The Cell, Vol. 4 (J. Brachet and A. Mirsky, eds.), pp. 365–911, Academic Press, New York.

    Google Scholar 

  • Huxley, H. E., 1969, The mechanism of muscular contraction, Science 164:1356.

    Article  Google Scholar 

  • Huxley, H. E., and Brown, W., 1967, The low-angle x-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor, J. Mol. Biol. 30:383.

    Google Scholar 

  • Huxley, H. E., and Hanson, J., 1954, Changes in cross-striations of muscle during contraction and stretch and their structural interpretation, Nature (London) 173:973.

    Article  Google Scholar 

  • Huxley, H. E., Faruqi, A. R., Bordas, J., Koch, M. H. J., and Milch, J. R., 1980, The use of synchrotron radiation in time-resolved X-ray studies of myosin layer-line reflections during muscle contraction, Nature (London) 284:140.

    Article  Google Scholar 

  • Inoué, H., Takenaka, T., and Tonomura, Y., 1979, Functional implications of the two-headed structure of myosin, Adv. Biophys. 13:1.

    Google Scholar 

  • Kaminer, B., and Bell, A. L., 1966, Myosin filamentogenesis—Effects of pH and ionic concentration, J. Mol. Biol. 20:391.

    Article  Google Scholar 

  • Kauzmann, W., 1957, Quantum Chemistry, Chapter 15, Academic Press, New York.

    MATH  Google Scholar 

  • Kinesota, K., Jr., Kawato, S., and Ikegami, S., 1977, A theory of fluorescence polarization decay in membranes, Biophys. J. 20:289.

    Article  Google Scholar 

  • Lowey, S., and Slayter, H. S., Weeds, A. G., and Baker, H., 1969, Substructure of the myosin molecule. I. Subfragments of myosin by enzymic degradation, J. Mol. Biol. 42:1.

    Article  Google Scholar 

  • Mendelson, R. A., and Cheung, P., 1976, Muscle crossbridges: Absence of direct effect of calcium on movement away from the thick filaments, Science 194:190.

    Article  Google Scholar 

  • Mendelson, R. A., and Cheung, P., 1978, Intrinsic segmental flexibility of the S-l moiety of myosin using single-headed myosin, Biochemistry 17:2139.

    Article  Google Scholar 

  • Mendelson, R. A., and Kretzschmar, K. M., 1980, Structure of subfragment 1 from low-angle x-ray scattering, Biochemistry 19:4103.

    Article  Google Scholar 

  • Mendelson, R. A., and Morales, M. F., 1977, The theory of fluorescence polarization from fluorescent labelled muscle fibers, Biochim. Biophys. Acta 459:590.

    Google Scholar 

  • Mendelson, R. A., and Wilson, M., 1981, Three dimensional disorder in helical systems: Application to dipolar ESR and fluorescent probes on muscle cross-bridges, Biophys. J. Abstr. 33:82.

    Google Scholar 

  • Mendelson, R. A., Morales, M. F., and Botts, J., 1973, Segmental flexibility of the S-l moiety of myosin, Biochemistry 12:2250.

    Article  Google Scholar 

  • Mendelson, R. A., Putnam, S., and Morales, M. F., 1975, Time dependent fluorescence depolarization and lifetime studies of myosin subfragment-one in the presence of nucleotide and actin, J. Supramol. Struct. 3:162.

    Article  Google Scholar 

  • Morimoto, K., and Harrington, W. F., 1974, Evidence for structural changes in vertebrate thick filaments induced by calcium, J. Mol. Biol. 88:693.

    Article  Google Scholar 

  • Nihei, T., Mendelson, R. A., and Botts, J., 1974a, The site of force generation in muscle contraction as deduced from fluorescence polarization studies, Proc. Natl. Acad. Sci. U.S.A. 71:274.

    Article  Google Scholar 

  • Nihei, T., Mendelson, R. A., and Botts, J., 1974b, Use of fluorescence polarization to observe changes in attitude of S-l moieties in muscle fibers, Biophys.J. 14:236–242.

    Article  Google Scholar 

  • Offer, G., and Elliott, A., 1978, Can a myosin molecule bind to two actin filaments?, Nature (London) 271:325.

    Article  Google Scholar 

  • Perrin, F., 1934, Mouvement Brownien d’un ellipsoide. I. Dispersion diélectrique pour des molécules ellipsoidales, J. Phys. Radium VII 5:497.

    Article  MATH  Google Scholar 

  • Perrin, F., 1936, Mouvement Brownien d’un ellipsoide. II. Rotation libre et dépolarisation des fluorescences: Translation et diffusion de molécules ellipsoidales, J. Phys. Radium VII 7:1.

    Article  MATH  Google Scholar 

  • Reedy, M., Holmes, K. C., and Tregear, R. T., 1965, Induced changes in orientation of cross-bridges, Nature (London) 207:1276.

    Article  Google Scholar 

  • Rome, E., 1972, Relaxation of glycerinated muscle: Low-angle x-ray diffraction studies, J. Mol. Biol. 65:331.

    Article  Google Scholar 

  • Seidel, J. E., Chap, M., and Gergely, J., 1970, Effect of nucleotides on spin labels bound to S1 thiol groups of myosin, Biochemistry 9:3265.

    Article  Google Scholar 

  • Sekine, T., and Kielley, W. W., 1964, The enzymmatic properties of N-ethyl maleimide modified myosin, Biochim. Biophys. Acta 81:336.

    Google Scholar 

  • Sutoh, K., and Harrington, W. F., 1977, Cross-linking of myosin thick filaments under activating and rigor conditions: A study of radial disposition of the cross-bridges, Biochemistry 16:2441.

    Article  Google Scholar 

  • Takashi, R., Duke, J., Ue, K, and Morales, M. F., 1976, Defining the “fast-reacting” thiols of myosin by reaction with 1,5 IAEDANS, Arch. Biochem. Biophys. 175:279.

    Article  Google Scholar 

  • Taylor, E., 1979, Mechanism of actomyosin ATPase and the problem of muscle contraction, CRC Crit. Rev. Biochem. 6:103.

    Article  Google Scholar 

  • Thomas, D. D., and Cooke, R., 1980, Orientation of spin-labelled myosin heads in glycerinated muscle fibers, Biophys.J. 32:891.

    Article  Google Scholar 

  • Thomas, D. D., Seidel, J. C., Hyde, J. S., and Gergely, J., 1975, Motion of subfragment-1 in myosin and its supramolecular complexes: Saturation transfer electron paramagnetic resonance, Proc. Natl. Acad. Sci. U.S.A. 72:1729.

    Article  Google Scholar 

  • Thomas, D. D., Ishiwata, S., Seidel, J., and Gergeley, J., 1980, Submillisecond rotational dynamics of spin-labelled myosin heads in myofibrils, Biophys.J. 32:873.

    Article  Google Scholar 

  • Tregear, R. T., and Mendelson, R. A., 1975, Polarization from a helix of fluorophores and its relation to that obtained from muscle, Biophys.J. 15:455.

    Article  Google Scholar 

  • Trentham, D. R., Eccleston, J. F., and Bagshaw, C. R., 1976, Kinetic analysis of ATPase mechanisms, Q. Rev. Biophys. 9:2.

    Article  Google Scholar 

  • Wahl, P., 1979, Analysis of fluorescence anisotropy decays by a least squares method, Biophys. Chem. 10:91.

    Article  Google Scholar 

  • Weber, G., 1972, Uses of fluorescence in biophysics and some recent developments, Annu. Rev. Biophys. 1:553.

    Article  Google Scholar 

  • Yagi, N., and Matsubara, I., 1980, Myosin heads do not move on activation in highly stretched vertebrate striated muscle, Science 207:307.

    Article  Google Scholar 

  • Yguerabide, J., 1972, Nanosecond fluorescence spectroscopy of macromolecules, Methods En-zymol. 26:498.

    Google Scholar 

  • Yguerabide, J., Epstein, H. F., and Stryer, L., 1970, Segmental flexibility in an antibody molecule, J. Mol. Biol. 51:573.

    Article  Google Scholar 

  • Yu, H., and Stockmeyer, W. H., 1967, Intrinsic viscosity of a once broken rod, J. Chem. Phys. 47:1369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Mendelson, R.A. (1982). Fluorescent-Probe Studies of Contractile Proteins. In: Dowben, R.M., Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4037-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4037-9_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4039-3

  • Online ISBN: 978-1-4684-4037-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics