Skip to main content

Cytoskeletal Defects in Avian Muscular Dystrophy

  • Chapter
Cell and Muscle Motility

Abstract

Since there is at present no effective form of chemotherapy available to humans affected with the major types of muscular dystrophy, hereditary and experimentally induced animal models have been extensively studied to gain information about beneficial effects of various pharmacological agents and to study nerve-muscle interactions with respect to structure and function. None of the animal models, however, is directly comparable to any of the human dystrophies, and analogies drawn between them can be very misleading. However, the genetically dystrophic chicken provides a convenient model for testing drugs that may be of benefit even though the primary lesions in these animals are unknown and their relevance to human muscular dystrophies is unclear. Despite these drawbacks, the dystrophic-chicken model is an especially promising system for the study of genetically inherited myopathies because the progressive developmental onset of the disease closely mimics the human form of Duchenne muscular dystrophy in the areas of histological signs of muscle degeneration, muscle-enzyme leakage into blood, and progressive loss of functional ability. Because of the large number of similarities that the avian model of muscular dystrophy shares with Duchenne muscular dystrophy, chemotherapeutic trials in chickens can assess quantitative and qualitative parameters before clinical trials are initiated. In this chapter, both morphological and biochemical data will be presented to document a cyto-skeletal defect in avian muscular dystrophy. Isaxonine, a recently synthesized drug, retards the developmental pathological processes in the dystrophic chicken. It will be shown that by daily injection of this chemotherapeutic agent, the cytoskeletal defect in avian muscular dystrophy is corrected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andia-Waltenbaugh, A. M., and Puck, T. T., 1977, Alzheimer’s disease: Futher evidence of a microtubule defect, J. Cell Biol 75;279a.

    Google Scholar 

  • Asnes, C. F., and Wilson, L., 1979, Isolation of bovine brain microtubule protein without glycerol: Polymerization kinetics change during purification cycles, Anal. Biochem. 98;64.

    Article  Google Scholar 

  • Barnard, P. J., and Barnard, E. A., 1980, Chemotherapy in the genetically dystrophic chicken with a neurotrophic drug and with serotonin antagonists, in: Proceedings of an International Symposium on Muscular Dystrophy Research (C. Angelina, G. A. Danieli, and D. Fontanari, eds.), pp. 242–249, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Berkowitz, S. A., Katagiri, J., Binder, H. K., and Williams, R. C., 1977, Separation and characterization of microtubule proteins from calf brain, Biochemistry 16;5610.

    Article  Google Scholar 

  • Brinkley, B. R., Fistel, S. H., and Marcum, J. M., 1980, Microtubules in cultured cells; indirect immunofluorescent staining with tubulin antibody, Int. Rev. Cytol. 63;59.

    Article  Google Scholar 

  • Connolly, J. A., and Kalnins, V. I., 1978, Visualization of centrioles and basal bodies by fluorescent staining with nonimmune rabbit sera, J. Cell Biol. 79;526.

    Article  Google Scholar 

  • Connolly, J. A., Kalnins, V. I., Cleveland, D. W., and Kirschner, M. W., 1978, Intracellular localization of the high molecular weight microtubule accessory protein by indirect immunofluorescence, J. Cell Biol. 76;781.

    Article  Google Scholar 

  • Connolly, J. A., Kalnins, V. I., and Barber, B. H., 1979, Microtubule organization in fibroblasts from dystrophic chickens and persons with Duchenne muscular dystrophy, Nature (London) 282;511.

    Article  Google Scholar 

  • Fuseler, J. W., Shay, J. W., and Feit, H., 1981, The role of intermediate (10-nm) filaments in the development and integration of the myofibrillar contractile apparatus in the embryonic mammalian heart, in Cell and Muscle Motility, Vol. 1 (R. Dowben and J. W. Shay, eds.), pp. 205–259, Plenum Press, New York.

    Google Scholar 

  • Gard, D. L., Bell, P. B., and Lazarides, E., 1979, Co-existence of desmin and the fibroblast intermediate filament subunit in muscle and nonmuscle cells: Identification and comparative peptide analysis, Proc. Natl. Acad. Sci. U.S.A. 76;3894.

    Article  Google Scholar 

  • Geiger, B., and Singer, S. S., 1980, Association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluorescence, Proc. Natl. Acad. Sci. U.S.A. 77;4769.

    Article  Google Scholar 

  • Hanson, J., and Huxley, H. E., 1955, The structural basis of contraction in striated muscle, Symp. Soc. Exp. Biol. 9;228.

    Google Scholar 

  • Harper, C. G., Buck, D., Gonates, N. K., Guilbert, B., and Avrameas, S., 1979, Skin fibroblast microtubular network in Alzheimer’s disease, Ann. Neurol. 6;548.

    Article  Google Scholar 

  • Hudecki, M. S., Pollena, C. M., Bhargava, A. K., Hudecki, R. S., and Heffner, R. R., 1979, Delayed functional disability in dystrophic chickens receiving chemotherapy, Muscle Nerve 2;57.

    Article  Google Scholar 

  • Hugelin, A., Legrain, Y., and Bondoux-Johan, M., 1979, Nerve growth promoting action of Isaxonine in rats, Experientia 35;626.

    Article  Google Scholar 

  • Huxley, H. E., and Hanson, J., 1954, Changes in the cross-striation of muscle during contraction and stretch and their structural interpretation, Nature (London) 173;973.

    Article  Google Scholar 

  • Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London) 227:680.

    Article  Google Scholar 

  • Lockwood, A. H., 1978, Tubulin assembly protein: Immunochemical and immunofluorescent studies on its function and distribution in microtubules and cultured cells, Cell 13;613.

    Article  Google Scholar 

  • Lowry, O. H., Rosebrough, N.J., Farr, A. L., and Randall, R. J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193;265.

    Google Scholar 

  • Miller, C. L., Fuseler, J. W., and Brinkley, B. R., 1977, Cytoplasmic microtubules in transformed mouse X nontransformed human cell hybrids: Correlation with in vitro growth, Cell 12;319.

    Article  Google Scholar 

  • Oliver, J. M., 1976, Impaired microtubule function correctable by cyclic GMP and cholinergic antagonists in the Chediak-Higashi syndrome, Am. J. Pathol. 85;395.

    Google Scholar 

  • Price, M., and Sanger, J. W., 1979, Intermediate filaments connect Z-discs in adult chicken muscle, J. Exp. Zool. 280;263.

    Article  Google Scholar 

  • Runge, M. S., Detrich, H. W., and Williams, R. C., 1979, Identification of the major 68,000-dalton protein of microtubule preparations as a 10-nm filament protein and its effect on microtubule assembly in vitro, Biochemistry 18;1689.

    Article  Google Scholar 

  • Sandoval, I. V., and Weber, K., 1980, Different tubulin polymers are produced by microtubule associated proteins MAP2 and Tau in the presence of guanosine 5-(α,β-methylene) triphosphate, J. Biol. Chem. 255;8952.

    Google Scholar 

  • Schneider, W., Morgenstern, E., and Reimers, H. J., 1979, Disassembly of microtubules in the Lesch-Nyhan syndrome, Klin. Wochenschr. 57;181.

    Article  Google Scholar 

  • Shay, J. W., and Fuseler, J. W., 1979, Diminished microtubules in fibroblast cells derived from inherited dystrophic muscle expiant, Nature (London) 278;178.

    Article  Google Scholar 

  • Shay, J. W., Feit, H., and Neudeck, U., 1980, Microtubules and avian muscular dystrophy, in: Microtubules and Microtubule Inhibitors (M. de Brabander and J. De Mey, eds.), pp. 545–553, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Shay, J. W., Thomas, L. E., and Fuseler, J. W., 1981, Altered mononuclear cell spreading and microtubules in Duchenne muscular dystrophy patients and carriers, in: Diseases of the Motor Unit (D. L. Schotland, ed.) (in press).

    Google Scholar 

  • Tarrade, T., and Hugelin, A., 1978, Nerve growth promoting action of Isaxonine in vitro, in: “Abstracts of the Second European Neuroscience Meeting,” Neurosci Lett. Suppl. 1;545.

    Google Scholar 

  • Thakar, J. H., Thede, A., and Strickland, K. P., 1980, On the ultrastructure of primary cultures of normal and dystrophic hamster tongue muscle, Muscle Nerve 3;340.

    Article  Google Scholar 

  • Wang, C., Asai, D. J., and Lazarides, E., 1980, The 68,000-dalton neurofilament-associated polypeptide is a component of nonneuronal cells and of skeletal myofibrils, Proc. Natl. Acad. Sci. U.S.A. 77;1541.

    Article  Google Scholar 

  • Weingarten, M. D., Lockwood, A. H., Hwo, S.-Y., and Kirschner, M. W., 1979, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. U.S.A. 72;1858.

    Article  Google Scholar 

  • White, J. G., and Clawson, C. C., 1979, The Chediak-Higashi syndrome: Microtubules in monocytes and lymphocytes, Am. J. Hematol. 7:349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Shay, J.W., Fuseler, J.W., Neudeck, U., Lorkowski, G., Stauver, M., Feit, H. (1982). Cytoskeletal Defects in Avian Muscular Dystrophy. In: Dowben, R.M., Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4037-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4037-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4039-3

  • Online ISBN: 978-1-4684-4037-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics