Skip to main content

Gamete Interaction in the Sea Urchin A Model for Understanding the Molecular Details of Animal Fertilization

  • Chapter
Fertilization and Embryonic Development In Vitro

Abstract

Fertilization is the fusion of a sperm with an egg, resulting in the restoration of the diploid condition and the activation of the metabolically dormant egg, setting the zygote on the pathway to cleavage, organogenesis, and formation of an adult. Fertilization has been studied extensively for over 100 years because of curiosity about the mechanism that gives rise to a new generation. More recently, research on fertilization has become important because of the obvious applications to problems of fertility control. Fertilization also provides an excellent model system to study a variety of cellular phenomena. It is particularly useful as a model for studying cell adhesion and membrane fusion. Fertilization is a rare example of a natural fusion of the plasma membranes of two cells (reviewed in Epel and Vacquier 1978; others are myoblast fusion and fusion of placental trophoblast cells). In addition to the fusion of two plasma membranes, there are two exocytotic events associated with fertilization. One is the fusion of the sperm acrosome granule membrane with the overlying sperm plasma membrane; the second is the massive exocytosis of egg cortical granules seconds after sperm-egg fusion (Epel and Vacquier, 1978). Finally, fertilization is also an excellent model for the study of the biochemical activation of two cells. The sperm undergoes an activation in response to the external egg investments, involving ion fluxes, an increase in respiration, and a change in cell shape involving the polymerization of actin (Tilney et al., 1973). The egg undergoes a dramatic metabolic activation, involving a variety of physiological changes such as ion fluxes, membrane fluidity changes, a membrane depolarization, increases in nucleoside and amino acid transport, and a marked increase in macromolecular synthesis (Epel, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aketa, K., 1967, On the sperm-egg bonding as the initial step of fertilization in the sea urchin, Embryologia 9:238–245.

    Google Scholar 

  • Aketa, K., 1975, Physiological studies on the sperm surface component responsible for sperm-egg bonding in sea urchin fertilization. I. Effect of sperm-binding proteins on the fertilizing capacity of sperm, Exp. Cell Res. 80:439–441.

    Google Scholar 

  • Aketa, K., 1975, Physiological studies on the sperm surface component responsible for spermegg bonding in sea urchin fertilization. II. Effect of concanavalin A on the fertilizing capacity of sperm, Exp. Cell Res. 90:56–62.

    Google Scholar 

  • Aketa, K., Onitake, K., and Tsuzuki, H., 1972, Tryptic disruption of sperm-binding site of sea urchin egg surface, Exp. Cell Res. 71:27–32.

    Google Scholar 

  • Allen, G. J., and Bourne, F. J., 1978, Interaction of immunoglobulin fragments with the mammalian sperm acrosome, J. Exp. Zool. 203:271–276.

    Google Scholar 

  • Austin, C. R., 1966, Fertilization, Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Barros, C., and Yanagimachi, R., 1971, Induction of zona reaction in golden hamster eggs by cortical granule material, Nature (London) 233:268–269.

    Google Scholar 

  • Bellet, N. R., Vacquier, J. P., and Vacquier, V. D., 1977, Characterization and comparison of “bindin” isolated from sperm of two species of sea urchins, Biochem. Biophys. Res. Commun. 79:159–165.

    Google Scholar 

  • Bleil, J. D., and Wassarman, P. M., 1980a, Structure and function of the zona pellucida: Identification and characterization of the proteins of the mouse oocyte’s zona pellucida, Dev. Biol. 76:185–202.

    Google Scholar 

  • Bleil, J. D., and Wassarman, P. M., 1980b, Mammalian sperm-egg interaction: Identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm, Cell 20:873–882.

    Google Scholar 

  • Brandriff, B., Moy, G. W., and Vacquier, V. D., 1978, Isolation of sperm bindin from the oyster (Crassostrea gigas),Gamete Res. 1:89-99.

    Google Scholar 

  • Carroll, E. J., and Epel, D., 1975, Isolation and biological activity of the proteases released by sea urchin eggs following fertilization, Dev. Biol. 33:22–32.

    Google Scholar 

  • Chaffee, J. K., and Schachner, M., 1978, NS-6 (nervous system antigen-6): A new cell surface antigen of brain, kidney, and spermatozoa, Dev. Biol. 62:173–184.

    Google Scholar 

  • Chandler, J., and Heuser, J., 1980, The vitelline layer of the sea urchin egg and its modification during fertilization, J. Cell Biol. 84:618–632.

    Google Scholar 

  • Collins, F., 1976, A reevaluation of the fertilizin hypothesis of sperm agglutination and the description of a novel form of sperm adhesion, Dev. Biol. 49:381–394.

    Google Scholar 

  • Collins, F., and Epel, D., 1977, The role of calcium ions in the acrosome reaction of sea urchin sperm, Exp. Cell Res. 106:211–222.

    Google Scholar 

  • Colwin, L. H., and Colwin, A. L., 1967, Membrane fusion in relation to sperm-egg association, in: Fertilization, Volume 1 (C. B. Metz and A. Monroy, eds.), Academic Press, New York, pp. 295–367.

    Google Scholar 

  • Conway, A. F., and Metz, C. B., 1976, Phospholipase activity of sea urchin sperm: Its possible involvement in membrane fusion, J. Exp. Zool. 198:39–48.

    Google Scholar 

  • Czihak, G., 1975, The Sea Urchin Embryo: Biochemistry and Morphogenesis, Springer-Verlag, New York.

    Google Scholar 

  • Dan, J. C., 1952, Studies on the acrosome. I. Reaction to egg-water and other stimuli, Biol. Bull. 103:543–561.

    Google Scholar 

  • Dan, J. C., 1954, Studies on the acrosome. III. Effect of calcium deficiency, Biol. Bull. 107:335–349.

    Google Scholar 

  • Dan, J. C., 1956, The acrosome reaction, Int. Rev. Cytol. 5:365–393.

    Google Scholar 

  • Dan, J. C., 1967, Acrosome reaction and lysins, in: Fertilization, Volume 1 (C. B. Metz and A. Monroy, eds.), Academic Press, New York, pp. 237–293.

    Google Scholar 

  • Decker, G. L., Joseph, D. B., and Lennarz, W. J., 1976, A study of factors involved in induction of the acrosomal reaction in sperm of the sea urchin, Arbacia punctulata, Dev. Biol. 53:115–125.

    Google Scholar 

  • Dunbar, B. S., Wardrip, N. J., and Hedrick, J. L., 1980, Isolation, physicochemical properties, and macromolecular composition of zona pellucidae from procine oocytes, Biochemistry 19:356–365.

    Google Scholar 

  • Epel, D., 1978, Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes, Curr. Top. Dev. Biol. 12:185–246.

    Google Scholar 

  • Epel, D., and Vacquier, V. D., 1978, Membrane fusion events during invertebrate fertilization, Cell Surface Rev. 5:1–63.

    Google Scholar 

  • Feuchther, F. A., and Eddy, E. M., 1980, Monoclonal antibodies to mouse sperm surfaces, J. Cell Biol 87:147a.

    Google Scholar 

  • Foerder, C. A., and Shapiro, B. M., 1977, Release of ovoperoxidase from sea urchin eggs hardens the fertilization membrane with tyrosirie cross-links, Proc. Natl. Acad. Sci. USA 74:4214–4218.

    Google Scholar 

  • Fulton, B. P., and Whittingham, D. G., 1978, Activation of mammalian oocytes by intracellular injection of calcium, Nature (London) 273:149–151.

    Google Scholar 

  • Gabel, C. A., Eddy, E. M., and Shapiro, B. M, 1979, Regional differentiation of the sperm surface as studied with 125I-diiodofluorescein isothiocyanate, an impermeant reagent that allows isolation of the labeled components, J. Cell Biol. 82:742–754.

    Google Scholar 

  • Garbers, D. L., and Kopf, G. S., 1980, The regulation of spermatozoa by cyclic nucleotides, Adv. Cyclic Nucleotide Res. 13:251–306.

    Google Scholar 

  • Gething, M. J., White, J. M., and Waterfield, N. D., 1978, Purification of the fusion protein of Sendai virus: Analysis of the NH2-terminal sequence generated during precursor activation, Proc. Natl. Acad. Sci. USA. 75:2737–2740.

    Google Scholar 

  • Gilkey, J. C., Jaffe, L. S., Ridgway, L. S. B., and Reynolds, G. T., 1977, A free calcium wave traverses the activating egg of the medaka Oryzias latipes, J. Cell Biol. 76:448–466.

    Google Scholar 

  • Giudice, G., 1973, Developmental Biology of the Sea Urchin Embryo, Academic Press, New York.

    Google Scholar 

  • Glabe, C. G., and Lennarz, W. J., 1979, Species-specific sperm adhesion in sea urchins: A quantitative investigation of bindin-mediated egg agglutination, J. Cell Biol. 83:595–604.

    Google Scholar 

  • Glabe, C. G., and Lennarz, W. J., 1981, Isolation and partial characterization of a high molecular weight egg surface glycoconjugate implicated in sperm adhesion, J. Supramol. Struct., submitted.

    Google Scholar 

  • Glabe C. G., and Vacquier, V. D., 1977a, Species-specific agglutination of eggs by bindin isolated from sea urchin sperm, Nature (London) 267:836–838.

    Google Scholar 

  • Glabe, C. G., and Vacquier, V. D., 1977b, Isolation and characterization of the vitelline layer of sea urchin eggs, J. Cell Biol. 75:410–421.

    Google Scholar 

  • Glabe, C. G., and Vacquier, V. D., 1978, Egg surface glycoprotein receptor for sea urchin sperm bindin, Proc. Natl. Acad. Sci. USA 75:881–885.

    Google Scholar 

  • Goldberg, G. H., Boyse, E. A., Bennett, D., Chied, N., and Carswell, E. A., 1971, Serological demonstration of H-Y (male) antigen on mouse sperm Nature 232:478–480.

    Google Scholar 

  • Gray, J. P., and Drummond, G. I., 1976, Guanylate cyclase of sea urchin sperm: subcellular localization, Arch. Biochem. Biophys. 172:31–38.

    Google Scholar 

  • Green, J. D., and Summers, R. G., 1980, Ultrastructural demonstration of trypsin-like protease in acrosome of sea urchin sperm, Science 209:398–400.

    Google Scholar 

  • Gwatkin, R. B. L., Williams, D. T., Hartmann, J. F., and Kniazuk, M., 1973, The zona reaction of hamster and mouse eggs: Production in vitro by a trypsin-like protease from cortical granules, J. Reprod. Fertil. 32:259–265.

    Google Scholar 

  • Hall, H. G., 1978, Hardening of the sea urchin fertilization envelope by peroxidase-catalyzed phenolic coupling of tryosines, Cell 15:343–355.

    Google Scholar 

  • Hanada, A., and Chang, M. C., 1972, Penetration of zona-free eggs by spermatozoa of different species, Biol. Reprod. 6:300–309.

    Google Scholar 

  • Hathaway, R. R., and Metz, C. B., 1962, Interactions between Arbacia sperm and 35S-labeled fertilizin, Biol. Bull. 120:360–369.

    Google Scholar 

  • Isaka, S., Hotta, K., and Kurokawa, M., 1970, Jelly coat substances of sea urchin eggs, Exp. Cell Res. 59:37–42.

    Google Scholar 

  • Jaffee, L. A., 1976, Fast block to polyspermy in sea urchin eggs is electrically mediated, Nature 261:68–71.

    Google Scholar 

  • Kidd, P., 1978, The jelly and vitelline coats of the sea urchin egg: New ultrastructural features, J. Ultrastruct. Res. 64:204–215.

    Google Scholar 

  • Kinsey, W. H., Rubin, J. A., and Lennarz, W. J., 1980, Studies on the specificity of sperm binding in echinoderm fertilization, Dev. Biol. 74:245–250.

    Google Scholar 

  • Levine, A. E., and Walsh, K. A., 1979, Involvement of an acrosin-like enzyme in the acrosome reaction of sea urchin sperm, Dev. Biol. 72:126–137.

    Google Scholar 

  • Levine, A. E., and Walsh, K. A., 1980, Purification of an acrosin-like enzyme from sea urchin sperm, J. Biol. Chem. 255:4814–4820.

    Google Scholar 

  • Levine, A. E., Walsh, K. A., and Fodor, E. J. B., 1978, Evidence of an acrosin-like enzyme in the acrosome reaction of sea urchin sperm, Dev. Biol. 72:126–137.

    Google Scholar 

  • Lillie, F. R., 1915, Sperm agglutination and fertilization, Biol. Bull. 23:18–33.

    Google Scholar 

  • Lillie, F. R., 1919, Problems of Fertilization, University of Chicago Press, Chicago.

    Google Scholar 

  • Loeb, J., 1916, The Organism as a Whole, University of Chicago Press, Chicago.

    Google Scholar 

  • Longo, F. J., and Kunkle, M., 1978, Transformations of sperm nuclei upon insemination, Curr. Top. Dev. Biol. 12:149–184.

    Google Scholar 

  • Lopo, A. C., and Vacquier, V. D., 1980a, Radioiodination and characterizationof the plasma membrane of sea urchin sperm, Dev. Biol. 76:15–25.

    Google Scholar 

  • Lopo, A. C., and Vacquier, V. D., 1980b, Antibody to a sperm surface glycoprotein inhibits the egg jelly-induced acrosome reaction of sea urchin sperm, Dev. Biol. 79:325–333.

    Google Scholar 

  • Lopo, A. C., and Vacquier, V. D., 1980c, Sperm-specific surface antigenicity common to seven animal phyla, Nature (London) 288:397–399.

    Google Scholar 

  • Lopo, A., Bean, C. P., and Epel, D., 1977, Studies on sperm-jelly interaction: Is there chemotaxis?, Biol. Bull. 153:437.

    Google Scholar 

  • Lui, C. W., and Meizel, S., 1979, Further evidence in support of a role for hamster sperm hydrolytic enzymes in the acrosome reaction, J. Exp. Zool. 207:173–182.

    Google Scholar 

  • Mar, H., 1980, Radial cortical fibers and pronuclear migration in fertilized and artificially activated eggs of Lytechinus pictus, Dev. Biol. 78:1–13.

    Google Scholar 

  • Meizel, S., 1972, Biochemical detection and activation of an inactive form of a trypsin-like enzyme in rabbit testes, J. Reprod. Fertil. 31:459–462.

    Google Scholar 

  • Meizel, S., 1978, The mammalian sperm acrosome reaction, a biochemical approach, in: Development in Mammals, Volume 3 (M. H. Johnson, ed.), North-Holland, New York, pp. 1–64.

    Google Scholar 

  • Metz, C. B., 1967, Gamete surface components and their role in fertilization, in: Fertilization, Volume 1 (C. B. Metz and A. Monroy, eds.), Academic Press, New York, pp. 163–236.

    Google Scholar 

  • Metz, C. B., 1978, Sperm and egg receptors involved in fertilization, Curr. Top. Dev. Biol. 12:107–147.

    Google Scholar 

  • Metz, C. B., and Monroy, A., (eds.), 1967, Fertilization, Academic Press, New York.

    Google Scholar 

  • Miller, R. L., 1966, Chemotaxis during fertilization in the hydroid Campanularia, J. Exp. Zool. 162:23–44.

    Google Scholar 

  • Miller, R. L., 1975, Chemotaxis of the spermatozoa of dona intestinalis, Nature (London) 254:244–245.

    Google Scholar 

  • Miller, R. L., 1979a, Sperm chemotaxis in the hydromedusae, I. Species-specificity and sperm behavior, Mar. Biol. 53:99–114.

    Google Scholar 

  • Miller, R. L., 1979b, Sperm chemotaxis in the hydromedusae. II. Some chemical properties of the sperm attractants, Mar. Biol. 53:115–124.

    Google Scholar 

  • Miller, R. L., and Brokaw, C. J., 1970, Chemotactic turning behaviour of Tubularia spermatozoa, J. Exp. Biol. 52:669–706.

    Google Scholar 

  • Miller, R. L., and Tseng, C. Y., 1974, Properties and partial purification of the sperm attractant of Tubularia, Am. Zool. 14:467–486.

    Google Scholar 

  • Monroy, A., 1965, Chemistry and Physiology of Fertilization, Holt, Rinehart & Winston, New York.

    Google Scholar 

  • Moy, G. W., and Vacquier, V. D., 1979, Immunoperoxidase localization of binding during the adhesion of sperm to sea urchin eggs, Curr. Top. Dev. Biol. 13:31–44.

    Google Scholar 

  • Müller, D. G., Gassmann, G., and Leining, K., 1979, Isolation of a spermatozoid-releasing and-attracting substance from female gametophytes of Laminaria digitata, Nature 279: 430–431.

    Google Scholar 

  • Myles, D. G., Primakoff, P., and Bellve, A. R., 1980, Establishment and maintenance of cell surface domains of the guinea pig sperm, J. Cell Biol. 87:99a.

    Google Scholar 

  • Ohno, S., 1979, Major sex-determining genes, in: Monographs on Endocrinology, Volume 11 (F. Gross, A. Labhard, M. B. Lipsett, T. Mann, L. T. Samuels, and J. Sander, eds.), Springer-Verlag, New York, pp. 1–140.

    Google Scholar 

  • Peterson, R. N., Russell, L., Bundman, D., and Freund, M., 1980, Sperm-egg interaction: Evidence for boar sperm plasma membrane receptors for procine zona pellucida, Science 207:13–74.

    Google Scholar 

  • Popa, G. T., 1927, The distribution of substances in the spermatozoon (Arbacia and Nereis), Biol. Bull. 52:238–257.

    Google Scholar 

  • Primakoff, P., Myles, D. G., and Bellve, A. R., 1980, Topographical organization of the mammalian sperm surface, J. Cell Biol. 87:98a.

    Google Scholar 

  • Runnstrom J., 1966, The vitelline membrane and cortical particles in sea urchin eggs and their function in maturation and fertilization, Adv. Morphog. 5:221–325.

    Google Scholar 

  • Russo, J., Metz, C. B., and Dunbar, B. S., 1975, Membrane damage to immunologically immobilized rabbit spermatozoa visualized by immunofluorescence and scanning electron microscopy, Biol. Reprod. 13:136–141.

    Google Scholar 

  • Schachner, M., Wortham, K. A., Carter, L. D., and Chaffee, J. K., 1975, NS-4 (nervous system antigen-4), a cell surface antigen of developing and adult mouse brain and sperm, Dev. Biol. 44:313–325.

    Google Scholar 

  • Schackmann, R. W., and Shapiro, B. M., 1981, A partial sequence of ionic cnanges associated with the acrosome reaction of Strongylocentrotus purpuratus, Dev. Biol. 81:145–154.

    Google Scholar 

  • Schackmann, R. W., Eddy, E. M., and Shapiro, B. M., 1978, The acrosome reaction of Strongylocentrotus purpuratus sperm: Ion requirements and movements, Dev. Biol. 65:483–495.

    Google Scholar 

  • Schatten, H., and Schatten, G., 1980, Surface activity at the egg plasma membrane during sperm incorporation and its cytochalasin B sensitivity, Dev. Biol. 78:435–449.

    Google Scholar 

  • Schmell, E. D., and Gulyas, B. J., 1980, Ovoperoxidase activation in ionophore-treated mouse eggs. II. Evidence for the enzyme’s role in hardening the zona pellucida, Gamete Res. 3:279–290.

    Google Scholar 

  • Schmell, E., Earles, B. J., Breaux, C., and Lennarz, W. J., 1977, Identification of a sperm receptor on the surface of the eggs of the sea urchin Arbacia punctulata, J. Cell. Biol. 72:35–46.

    Google Scholar 

  • SeGall, G. K., and Lennarz, W. J., 1979, Chemical characterization of the component of thejelly coat from sea urchin eggs responsible for induction of the acrosome reaction, Dev. Biol. 71:33–48.

    Google Scholar 

  • Silvers, W. K., and Wachtel, S. S., 1977, H-Y antigen: Behavior and function, Science 195:956–960.

    Google Scholar 

  • Solter, D., and Schachner, M., 1976, Brain and cell surface antigens (NS-4) on preimplantation mouse embryos, Dev. Biol. 52:98–104.

    Google Scholar 

  • Steinhardt, R. A., Lundin, L., and Mazia, D., 1971, Bioelectric responses of echinoderm egg to fertilization, Proc. Natl. Acad. Sci. 68:2426–2430.

    Google Scholar 

  • Summers, R. G., and Hylander, B. L., 1975, Species-specificity of acrosome reaction and primary gamete binding in echinoids, Exp. Cell Res. 96:63–68.

    Google Scholar 

  • Summers, R. G., and Hylander, B. L., 1976, Primary gamete binding: Quantitative determination of its specificity in echinoid fertilization, Exp. Cell Res. 100:190–194.

    Google Scholar 

  • Summers, R. G., Hylander, B. L., Colwin, L. H., and Colwin, A. L., 1975, The functional anatomy of the echinoderm spermatozoon and its interaction with the egg at fertilization, Am. Zool. 15:523–551.

    Google Scholar 

  • Summers, R. G., Talbot, P., Keough, E. M., Hylander, B. L., and Franklin, L. E., 1976, Ionophore A23187 induces acrosome reactions in sea urchin and guinea pig spermatozoa, J. Exp. Zool. 196:381–386.

    Google Scholar 

  • Talbot, P., Summers, R. G., Hylander, B. L., Keough, E. M., and Franklin, L. E., 1976, The role of calcium in the acrosome reaction: An analysis using ionophore A23187, J. Exp. Zool. 198:383–392.

    Google Scholar 

  • Tilney, L. G., 1976a, The polymerization of actin. II. How nonfilamentous actin becomes nonrandomly distributed in sperm: Evidence for the association of this actin with membrane, J. Cell Biol. 69:51–72.

    Google Scholar 

  • Tilney, L. G., 1976b, The polymerization of actin. III. Aggregates of nonfilamentous actin and its associated proteins: A storage form of action, J. Cell Biol. 69:73–89.

    Google Scholar 

  • Tilney, L. G., 1978, The polymerization of actin, IV. A new organelle, the actomere, that initiates the assembly of actin filaments in Thyone sperm, J. Cell Biol. 71:46.

    Google Scholar 

  • Tilney, C. G., and Mooseker, M. S., 1976, Actin filament-membrane attachment: Are membrane proteins involved? J. Cell Biol. 71:402–416.

    Google Scholar 

  • Tilney, L. G., Hatano, S., Ishikawa, H., and Mooseker, M. S., 1973, The polymerization of actin: Its role in the generation of the acrosomal process of certain echinoderm sperm, J. Cell Biol. 59:109–126.

    Google Scholar 

  • Tilney, L. G., Kiehart, D. P., Sardet, C., and Tilney, M., 1978, Polymerization of actin. IV. Role of Ca+2 and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm, J. Cell Biol. 77:536–550.

    Google Scholar 

  • Tilney, L. G., Clain, J. C., and Tilney, M. S., 1979, Membrane events in the acrosomal reaction of Limulus sperm, J. Cell biol. 81:229–253.

    Google Scholar 

  • Tsuzuki, H., and Aketa, K., 1969, A study on the possible significance of carbohydrate moiety in the sperm-binding protein from sea urchin egg, Exp. Cell Res. 55:43–45.

    Google Scholar 

  • Tsuzuki, H., Yoshida, M., Onitake, K., and Aketa, K., 1977, Purification of the sperm-binding factor from the egg of the sea urchin, Hemicentrotus pulcherrimus, Biochem. Biophys. Res. Commun. 76: 502–508.

    Google Scholar 

  • Tyler, A., 1949, Properties of fertilizin and related substances of eggs and sperm of marine animals, Am. Nat. 83:195–219.

    Google Scholar 

  • Uno, Y., and Hoshi, M., 1978, Separation of the sperm agglutinin and the acrosome-reaction inducing substance in egg jelly of starfish, Science 200:58–59.

    Google Scholar 

  • Vacquier, V. D., 1979a, The fertilizing capacity of sea urchin sperm rapidly decreases after induction of the acrosome reaction, Dev. Growth Differ. 21:61–69.

    Google Scholar 

  • Vacquier, V. D., 1979b, The interactions of sea urchin gametes during fertilization, Am. Zool. 19:839–849.

    Google Scholar 

  • Vacquier, V. D., 1980, The adhesion of sperm to sea urchin eggs, in: The Cell Surface, Mediator of Developmental Processes (N. K. Wessells, ed.), 38th Symposium of the Society for Developmental Biology.

    Google Scholar 

  • Vacquier, V. D., and Moy, G. W., 1977, Isolation of bindin: The protein responsible for adhesion of sperm to sea urchin eggs, Proc. Natl. Acad. Sci. USA 74:2456–2460.

    Google Scholar 

  • Vacquier, V. D., and Moy, G. W., 1978, Macromolecules mediating sperm-egg recognition and adhesion during sea urchin fertilization, in: Cell Reproduction (E. R. Dirksen, D. M. Prescott, and C. F. Fox, eds.), Academic Press, New York, pp. 389–397.

    Google Scholar 

  • Vacquier, V. D., and Payne, J. E., 1973, Methods for quantitating sea urchin sperm-egg binding, Exp. Cell Res. 82; 227–235.

    Google Scholar 

  • Vacquier, V. D., Tegner, M. J., and Epel, D., 1972, Protease activity established the block against polyspermy in sea urchin eggs, Nature (London) 240:352–353.

    Google Scholar 

  • Vacquier, V. D., Tegner, M. J., and Epel, D., 1973, Protease released from sea urchin eggs at fertilization alters the vitelline layer and aids in preventing polyspermy, Exp. Cell Res. 80:111–119.

    Google Scholar 

  • Vacquier, V. D., Brandriff, B., and Glabe, C. G., 1979, The effect of soluble egg jelly on the fertilizability of acid-dejellied sea urchin eggs, Dev. Growth Differ. 21:47–60.

    Google Scholar 

  • Wachtel, S.S., 1977a, H-Y antigen: Genetics and serology, Immunol. Rev. 33:3–58.

    Google Scholar 

  • Wachtel, S. S., 1977b, H-Y antigen and the genetics of sex determination, Science 198:797–799.

    Google Scholar 

  • Yanagimachi, R., 1972, Fertilization of guinea pig eggs in vitro. Anat. Rec. 174:9–20.

    Google Scholar 

  • Yanagimachi, R., 1977, Specificity of sperm-egg interaction, in: Immunobiologyof Gametes (M. H. Johnson and M. Edidin, eds.), Cambridge University Press, London, pp. 255–296.

    Google Scholar 

  • Yanagimachi, R., 1978, Spern-egg association in mammals, Curr. Top. Dev. Biol. 12:83–106.

    Google Scholar 

  • Yanagimachi, R., and Usui, N., 1974, Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa, Exp. Cell Res. 89:161–174.

    Google Scholar 

  • Zucker, R. S., Steinhardt, R. A., and Winkler, M. M., 1978, Intracellular calcium release and the mechanisms of parthenogenetic activation of the sea urchin egg, Dev. Biol. 65:285–295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Lopo, A.C., Vacquier, V.D. (1981). Gamete Interaction in the Sea Urchin A Model for Understanding the Molecular Details of Animal Fertilization. In: Mastroianni, L., Biggers, J.D. (eds) Fertilization and Embryonic Development In Vitro . Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4016-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4016-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4018-8

  • Online ISBN: 978-1-4684-4016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics