Skip to main content

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 15))

Abstract

A plant encounters a large number of potential pathogens in its environment, but, because of the highly specific nature of most host-pathogen interactions, rarely does successful infection occur. This specificity apparently is dependent on the initial recognition between the plant and pathogen, which may be mediated by the interaction of complementary macromolecules on the surfaces of both organisms. Recognition can facilitate growth of both organisms, as is the case of symbiotic relationships. Recognition also could function as a defense mechanism. A plant can recognize and immobilize a potential pathogen, thus preventing its multiplication. Though the hypothesis of recognition as a specific defense mechanism is an attractive explanation of various resistance phenomena, it has not been demonstrated unequivocally. Most of the work in this area involves symbiotic or plant pathogenic bacteria. This paper will examine the evidence for attachment of bacteria to plant cell walls and then proceed to a discussion of the nature of the bacterial and plant components that may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stall, R. E. and A. A. Cook. 1979. Evidence that bacterial contact with the plant cell is necessary for the hypersensitive reaction but not the susceptible reaction. Physiol. Plant Pathol. 14:77–84.

    Article  CAS  Google Scholar 

  2. Lippincott, B. B. and J. A. Lippincott. 1969. Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. J. Bacteriol. 97:620–628.

    PubMed  CAS  Google Scholar 

  3. Schilperoort, R. A. 1969. Investigations on plant tumors. Crown gall: On the biochemistry of tumor-induction by Agrobacterium tumefaciens. Thesis, University of Leiden.

    Google Scholar 

  4. Beiderbeck, R. 1973. Bacterial cell wall and tumor induction by Agrobacterium tumefaciens. Z. Naturforschung. Part C. 28:19–201.

    Google Scholar 

  5. Whatley, M. H. 1977. Studies on the adherence step exxential for tumor induction by Agrobacterium. Thesis, Northwestern University, Evanston, IL.

    Google Scholar 

  6. Glogowski, W. and A. G. Galsky. 1978. Agrobacterium tumefaciens site attachment as necessary prerequisite for crown gall tumor formation on potato discs. Plant Physiol. 61:1031–1033.

    Article  PubMed  CAS  Google Scholar 

  7. Bogers, R. J. 1972. On the interaction of A. tumefaciens with cells of Kalanchoe daigremontiana. In Proc. 3rd Int. Conf. Plant Pathogenic Bacteria, (H. P. Maas Geesteranus, ed.). Wageningen, the Netherlands: Cent. Agri. Publ. Doc. pp. 239–250.

    Google Scholar 

  8. Matthysse, A. G. and P. M. Wyman. 1978. Attachment of Agrobacterium tumefaciens to tissue culture cells. Plant Physiol. 61S:72.

    Google Scholar 

  9. Ohyama, K., L. E. Pelcher, A. Schaefer, and L. C. Fowke. 1979. In vitro binding of Agrobacterium tumefaciens to plant cells from suspension culture. Plant Physiol. 63:382–387.

    Article  PubMed  CAS  Google Scholar 

  10. Chilton, M.-D., M. H. Drummond, D. J. Merlo, D. Sciaky, A. L. Montoya, M. P. Gordon and E. W. Nester. 1977. Stable incorporation of plasmid DNA into higher plant cells: The molecular basis of crown gall tumorigenesis. Cell 11:263–271.

    Article  PubMed  CAS  Google Scholar 

  11. Drummond, M. H., M. P. Gordon, E. W. Nester, and M.-D. Chilton. 1977. Foreign DNA of bacterial plasmid origin is transcribed in crown gall tumors. Nature 269:535–536.

    Article  CAS  Google Scholar 

  12. Spiess, L. D., B. B. Lippincott, and J. A. Lippincott. 1971. Development and gametophore induction in the moss Pylaisiella selwynii as influenced by Agrobacterium tumefaciens. Amer. J. Bot. 58:726–731.

    Article  Google Scholar 

  13. Spiess, L. D., B. B. Lippincott, and J. A. Lippincott. 1976. The requirement of physical contact for moss gametophore induction by Agrobacterium tumefaciens. Amer. J. Bot. 63:324–328.

    Article  Google Scholar 

  14. Spiess, L. D., J. C. Turner, P. G. Mahlberg, B. B. Lippincott, and J. A. Lippincott. 1977. Adherence of agrobactería to moss protonema and gametophores viewed by scanning electron microscopy. Amer. J. Bot. 64:1200–1208.

    Article  Google Scholar 

  15. Chen, A.-P. T. and D. A. Phillips. 1976. Attachment of Rhizobium to legume roots as the basis for specific interactions. Plant Physiol. 38:83–88.

    Article  Google Scholar 

  16. Napoli, C. A., F. B. Dazzo, and D. H. Hubbell. 1975. Production of cellulose microfibrils by Rhizobium. Appl. Microbiol. 30:123–131.

    CAS  Google Scholar 

  17. Dazzo, F. B., C. A7-Napoli, and D. H. Hubbell. 1976. Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover symbiosis. Appl. Environ. Microbiol. 32:166–171.

    PubMed  CAS  Google Scholar 

  18. Klement, Z. 1963. Method for the rapid detection of pathogenicity of phytopathogenic pseudomonads. Nature 199:299–300.

    Article  PubMed  CAS  Google Scholar 

  19. Sequeira, L., G. Gaard, and G. A. de Zoeten. 1977. Attachment of bacteria to host cell walls: Its relation to mechanisms of induced resistance. Physiol. Plant Pathol. 10:43–50.

    Article  Google Scholar 

  20. Goodman, R. N., P. Y. Huang, and J. A. White. 1976. Ultrastructural evidence for immobilization of an incompatible bacterium, Pseudomonas pisi, in tobacco leaf tissue. Phytopathology 66:754–764.

    Article  Google Scholar 

  21. Sing, V. O., and M. N. Schroth. 1977. Bacteria-plant cell surface interactions: Active immobilization of saprophytic bacteria in plant leaves. Science 197:759–761.

    Article  PubMed  CAS  Google Scholar 

  22. Hildebrand, D. C., M.-C. Alosí, and M. N. Schroth. 1980. Physical entrapment of pseudomonads in bean leaves by films formed at air-water interfaces. Phytopathology 70:98–109.

    Article  Google Scholar 

  23. Daub, M. E. and D. J. Hagedorn. 1980. Growth kinetics and interactions of Pseudomonas syringae with susceptible and resistant bean tissues. Phytopathology 70:429–436.

    Article  Google Scholar 

  24. Sigee, D. C., and H. A. S. Epton. 1975. Ultrastructure of Pseudomonas phaseolicola in resistant and susceptible leaves of French bean. Physiol. Plant Pathol. 6:29–34.

    Google Scholar 

  25. Gaard, G. and G. A. de Zoeten. 1979. Plant virus uncoating as a result of virus-cell wall interactions. Virology 96:21–31.

    Article  PubMed  CAS  Google Scholar 

  26. Huang, J. S. and G. C. Van Dyke. 1978. Interaction of tobacco callus tissue with Pseudomonas tabaci, P. pisi, and P. fluorescens. Physiol. Plant Pathol. 13:65–72.

    Article  Google Scholar 

  27. Politis, D. J. and R. N. Goodman. 1978. Localized cell wall appositions: Incompatibility response of tobacco leaf cells to Pseudomonas pisi. Phytopathology 68:309–316.

    Article  Google Scholar 

  28. Cason, E. T., Jr., P. E. Richardson, M. K. Essenberg, L. A. Brinkerhoff, W. M. Johnson, and R. J. Venere. 1978. Ultrastructural cell wall alterations in immune cotton leaves inoculated with Xanthomonas malvacearum. Phytopathology 68:1015–1021.

    Article  Google Scholar 

  29. Fett, W. F. 1979. Occurrence and physiological properties of Pseudomonas glycinea and Xanthomonas phaseoli var. sojensis in Wisconsin and presence of a bacterial agglutinating factor in soybean. Thesis, University of Wisconsin, Madison, WI.

    Google Scholar 

  30. Cook, A. A. and R. E. Stall. 1977. Effects of water-soaking on response to Xanthomonas vesicatoria in pepper leaves. Phytopathology 67:1101–1103.

    Article  Google Scholar 

  31. Victoria, J. I. 1977. Resistance in corn (Zea mays L.) to bacterial stalk rot in relation to virulence of strains of Erwinia chrysanthemi. Thesis, University of Wisconsin, Madison, WI.

    Google Scholar 

  32. Whatley, M. H., J. S. Bodwin, B. B. Lippincott, and J. A. Lippincott. 1976. Role for Agrobacterium cell envelope lipopolysaccharide in infection site attachment. Infect. Immun. 13:1080–1083.

    PubMed  CAS  Google Scholar 

  33. Whatley, M. H., J. B. Margot, J. Schell, B. B. Lippincott, and J. A. Lippincott. 1978. Plasmid and chromosomal determination of Agrobacterium adherence specificity. J. Gen. Microbiol. 107:395–398.

    CAS  Google Scholar 

  34. Whatley, M. H. and L. D. Spiess. 1977. Role of bacterial lipopolysaccharide in attachment of Agro-bacterium to moss. Plant Physiol. 60:765–766.

    Article  PubMed  CAS  Google Scholar 

  35. Wolpert, J. S. and P. Albersheim. 1976. Hostsymbiont interactions. I. The lectins of legumes interact specifically with the 0-antigen containing lipopolysaccharide of their symbiont rhizobia. Biochem. Biophys. Res. Comm. 70:729–737.

    Article  PubMed  CAS  Google Scholar 

  36. Maier, R. J. and W. J. Brill. 1978. Involvement of Rhizobium japonicum 0-antigen in soybean nodulation. J. Bacteriol. 133:1295–1299.

    PubMed  CAS  Google Scholar 

  37. Kato, G., Y. Maruyama, and M. Nakamura. 1979. Role of lectins and lipopolysaccharide in the recognition process of specific legume-Rhizobium symbiosis. Agric. Biol. Chem. 43:1085–1092.

    Article  CAS  Google Scholar 

  38. Carlson, R. W., R. E7-Sanders, C. Napoli, and P. Albersheim. 1978. Host-symbiont interactions. III. Purification and partial characterization of Rhizobium lipopolysaccharides. Plant Physiol. 62:912–917.

    Article  PubMed  CAS  Google Scholar 

  39. Calvert, H. E., M. Lalonde, T. V. Bhuvaneswari, and W. D. Bauer. 1978. Role of lectins in plant-microorganism interactions. IV. Ultrastructural localization of soybean lectin binding sites on Rhizobium japonicum. Can. J. Microbiol. 24:785–793.

    Article  PubMed  CAS  Google Scholar 

  40. Bhuvaneswari, T. V., S. G. Pueppke, and W. D. Bauer. 1977. Role of lectins in plant-microorganism interactions. I. Binding of soybean lectins to rhizobia. Plant Physiol. 60:486–491.

    Article  PubMed  CAS  Google Scholar 

  41. Mort, A. and W. D. Bauer. 1978. The chemical basis of lectin binding to Rhizobium japonicum. Plant Physiol. 61S:59.

    Google Scholar 

  42. Sanders, R. E., R. W. Carlson, and P. Albersheim. 1978. A Rhizobium mutant incapable of nodulation and normal polysaccharide secretion. Nature 271:240–242.

    Article  CAS  Google Scholar 

  43. Dazzo, F. B. and D. H. Hubbell. 1975. Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association. Appl. Microbiol. 30:1017–1033.

    PubMed  CAS  Google Scholar 

  44. Dazzo, F. B. and W. J. Brill. 1979. Bacterial polysaccharide which binds Rhizobium trifolii to clover root hairs. J. Bacteriol. 137:1362–1373.

    PubMed  CAS  Google Scholar 

  45. Planqué, K. and W. J. Kijne. 1977. Binding of pea lectins to a glycan type polysaccharide in the cell walls of Rhizobium leguminosarum. FEBS Lett. 73:64–66.

    Article  PubMed  Google Scholar 

  46. Planqué, K., J. J. Nierop, and A. Burgers. 1979. The lipopolysaccharide of free-living and bacteroid forms of Rhizobium leguminosarum. J. Gen. Microbiol. 110:151–159.

    Google Scholar 

  47. Kamberger, W. 1979. Role of cell surface polysaccharides in the Rhizobium-pea symbiosis. FEMS Microbiol. Lett. 6:361–365.

    Article  CAS  Google Scholar 

  48. Bhagwat, A. A. and J. Thomas. 1980. Dual binding sites for peanut lectin on Rhizobia. J. Gen. Microbiol. 117:119–125.

    CAS  Google Scholar 

  49. Sequeira, L. and T. L. Graham. 1977. Agglutination of avirulent strains of Pseudomonas solanacearum by potato lectin. Physiol. Plant Pathol. 11:43–54.

    Article  CAS  Google Scholar 

  50. Whatley, M. H., N. Hunter, M. A. Cantrell, C. A. Hendrick, K. Keegstra, and L. Sequeira. 1980. Specific changes in Pseudomonas lipopolysaccharide associated with induction of the hypersensitive response in tobacco. Plant Physiol. 65:557–559.

    Article  PubMed  CAS  Google Scholar 

  51. Hendrick, C. A., M. H. Whatley, N. Hunter, M. A. Cantrell, and L. Sequeira. 1979. The hypersensitive response in tobacco: A phage capable of differentiating HR and non-HR-inducing Pseudomonas solanacearum. Plant Physiol. 63S:134.

    Google Scholar 

  52. Lovrekovich, L. and G. L. Farkas. 1965. Induced protection against wildfire disease in tobacco leaves treated with heat-killed bacteria. Nature (London) 205:823–824.

    Article  Google Scholar 

  53. Lozano, J. C. and L. Sequeira. 1970. Prevention of the hypersensitive reaction in tobacco leaves by heat-killed bacterial cells. Phytopathology 60:875–879.

    Article  Google Scholar 

  54. Graham, T. L., L. Sequeira, and T.-S. R. Huang. 1977. Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl. Environ. Microbiol. 34:424–432.

    PubMed  CAS  Google Scholar 

  55. Mazzuchí, U. and P. Pupillo. 1976. Prevention of confluent hypersensitive necrosis in tobacco by a bacterial protein-lipopolysaccharíde complex. Physiol. Plant Pathol. 9:101–112.

    Article  Google Scholar 

  56. Mazzuchí, U., C. Bazzi, and P. Pupillo. 1979. The inhibition of susceptible and hypersensitive reactions by protein-lipopolysaccharide complexes from phytopathogenic pseudomonads: Relationship to polysaccharide antigenic determinants. Physiol. Plant Pathol. 14:19–30.

    Article  Google Scholar 

  57. Morris, E. R., D. A. Rees, G. Young, M. D. Walkinshaw, and A. Darke. 1977. Order-disorder transition for a bacterial polysaccharide in solution. A role for polysaccharide conformation in recognition between Xanthomonas pathogen and its host plant. J. Molec. Biol. 110:1–16.

    Article  PubMed  CAS  Google Scholar 

  58. Gmeiner, J. and S. Schlecht. 1979. Molecular organization of the outer membrane of Salmonella typhimurium. Eur. J. Biochem. 93:609–620.

    Article  PubMed  CAS  Google Scholar 

  59. Bruegger, B. B. and N. T. Keen. 1979. Specific elicitors of glyceollin accumulation in the Pseudomonas glycinea-soybean host-parasite system. Physiol. Plant Pathol. 15:43–51.

    Article  CAS  Google Scholar 

  60. Bradshaw-Rouse, J., L. Sequeira, A. Kelman, and D. Coplin. 1980. Extracellular polysaccharide and virulence of Erwinia stewartii in relation to agglutination by a corn lectin. Phytopathology 71: (In press).

    Google Scholar 

  61. Moorhouse, R., W. T. Winter, and S. Arnott. 1977. Conformation and molecular organization in fibers of the capsular polysaccharide from E. coli M41 mutant. J. Molec. Biol. 109:373–391.

    Article  PubMed  CAS  Google Scholar 

  62. Lippincott, J. A. and B. B. Lippincott. 1977. Nature and specificity of the bacterium-host attachment in Agrobacterium infection. In Cell Wall Biochemistry Related to Specificity in Host-Plant Pathogen Interactions, (B. Solheim and J. Raa, eds.). Norway Uníversítetsforlaget, Oslo. pp. 439–451.

    Google Scholar 

  63. Lippincott, B. B., M. H. Whatley, and J. A. Lippincott. 1977. Tumor induction by Agrobacterium involves attachment to a site on the host plant cell wall. Plant Physiol. 59:388–390.

    Article  PubMed  CAS  Google Scholar 

  64. Lippincott, J. A7-and B. B. Lippincott. 1978. Cell walls of crown-gall tumors and embryonic plant tissues lack Agrobacterium adherence sites. Science 199:1075–1078.

    Article  PubMed  CAS  Google Scholar 

  65. Sequeíra, L. 1978. Lectins and their role in host-pathogen specificity. Annu. Rev. Phytopathol. 16:453–481.

    Article  PubMed  Google Scholar 

  66. Dazzo, F. B. 1980. Adsorption of microorganisms to roots and other plant surfaces. In Adsorption of Microorganisms to Surfaces, (G. Bitton and K. C. Marshall, eds.). John Wiley and Sons, Inc. pp. 253–316.

    Google Scholar 

  67. Hamblin, J. and S. P. Kent. 1973. Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nature 245:28–30.

    Article  CAS  Google Scholar 

  68. Bohlool, B. B. and E. L. Schmidt. 1974. Lectíns: A possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185:269–271.

    Article  PubMed  CAS  Google Scholar 

  69. Bohlool, B. B. and E. L. Schmidt. 1976. Immunofluorescent polar tips of Rhizobium japonícum: Possible site of attachment of lectin binding. J. Bacteriol. 125:118–194.

    Google Scholar 

  70. Bhuvaneswari, T. V. and W. D. Bauer. 1978. Role of lectíns in plant-microorganism interactions. III. The influence of rhizosphere/rhizoplane culture conditions on the soybean lectin-binding properties of rhízobia. Plant Physiol. 62:71–74.

    Article  PubMed  CAS  Google Scholar 

  71. Mort, A. J., M. E. Slodki, R. D. Plattner, and W. D. Bauer. 1979. The initiation of infections in soybean by Rhizobium. 4. Molecular structure of biologically active R. japonicum polysaccharides. Plant Physiol. 63S:135.

    Google Scholar 

  72. Pueppke, S. G., W. D. Bauer, K. Keegstra, and A. L. Ferguson. 1978. Role of lectins in plant-microorganism interactions. II. Distribution of soybean lectin in tissues of Glycine max (L.) Merr. Plant Physiol. 61:779–784.

    Article  PubMed  CAS  Google Scholar 

  73. Su, L.-C., S. G. Pueppke, and H. P. Friedman. 1980. Lectins and the soybean-Rhizobium symbiosis. I. Immunological investigations of soybean lines, the seeds of which have been reported to lack the 120,000 dalton soybean lectín. Bíochem. Biophys. Acta 629:292–304.

    Article  PubMed  CAS  Google Scholar 

  74. Dazzo, F. B. and W. J. Brill. 1977. Receptor site on clover and alfalfa roots for Rhizobium. Appl. Environ. Microbiol. 33:132–136.

    PubMed  CAS  Google Scholar 

  75. Dazzo, F. B., W. E. Yanke, and W. J. Brill. 1978. Trifoliin: A Rhizobium recognition protein from white clover. Biochim. Biophys. Acta 529:276–286.

    Article  Google Scholar 

  76. Duvick, J. P., L. Sequeira, and T. L. Graham. 1979. Binding of Pseudomonas solanacearum suface polysaccharides to plant lectín in vitro. Plant Physiol. 63S:134.

    Google Scholar 

  77. Leach, J., M. A. Cantrell, and L. Sequeíra. 1978. Localization of potato lectin by means of fluorescent antibody techniques. Phytopathol. News 12:197.

    Google Scholar 

  78. Dea, I. C. M., E. R. Morris, D. A. Rees, E. J. Welsh, H. A. Barnes, and J. Price. 1977. Associations of like and unlike polysaccharides: Mechanism and specificity in galactomannans, interacting bacterial polysaccharides, and related systems. Carbohydr. Res. 57:249–272.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Whatley, M.H., Sequeira, L. (1981). Bacterial Attachment to Plant Cell Walls. In: Loewus, F.A., Ryan, C.A. (eds) The Phytochemistry of Cell Recognition and Cell Surface Interactions. Recent Advances in Phytochemistry, vol 15. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3986-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3986-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3988-5

  • Online ISBN: 978-1-4684-3986-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics