Skip to main content

Metabolic Compromises Involved in the Growth of Microorganisms in Nutrient-Limited (Chemostat) Environments

  • Chapter
Trends in the Biology of Fermentations for Fuels and Chemicals

Part of the book series: Basic Life Sciences ((BLSC))

Abstract

Biochemical research, particularly over the past 50 years or so, has revealed ever more clearly the underlying unity of living processes. And this possibly has obscured to some extent the fact that there are nevertheless important physiological differences between microbial cells and, say, the cells of higher animals. One of the most fundamental of these, and one which undoubtedly has considerable evolutionary significance, is evident in the ways in which the different cells accommodate to environmental change. Clearly, the cells of higher animals have evolved to spend the whole of their existence in a closely regulated environment, and this is a condition of life for them. But microbial cells are markedly different. They generally are exposed to environments that fluctuate extensively (and often rapidly) and, being free-living creatures, they do not possess the capacity to regulate their surroundings. Instead, they respond to environmental change by changing themselves — structurally and functionally — and seemingly have acquired in the course of evolution a whole armoury of sophisticated control mechanisms whereby to effect such change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, A.J., Green, R.S. and Archibald, A. R. (1978). Wall composition and phage-binding properties of Bacillus subtilis W23 grown in chemostat culture in media containing varied concentrations of phosphate. FEMS Microbiol. Lett., 4, 129–132.

    Article  CAS  Google Scholar 

  2. Archibald, A.R. (1976). The use of bacteriophages to detect alterations in the cell surface of Bacillus subtilis. In: Continuous Culture 6 (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds.) pp 262–269. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  3. Archibald, A.R. and Coapes, H.E. (1976). Bacteriophage SP50 as a marker for cell wall growth in Bacillus, subtilis. J. Bacteriol. 125, 1195–1206.

    PubMed  CAS  Google Scholar 

  4. Baddiley, J. (1972). Teichoic acids in cell walls and membranes of bacteria. Essays in Biochem. 8, 35–77.

    CAS  Google Scholar 

  5. Brown, CM. (1976). Nitrogen metabolism in bacteria and fungi. In: Continuous Culture 6 (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, Eds.) pp 170–183. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  6. Calcott, P.H. and Postgate, J.R. (1972). On substrate-accelerated death in Klebsiella aevogenes. J. Gen. Microbiol. 70, 115–122.

    PubMed  CAS  Google Scholar 

  7. Calcott, P.H. and Postgate, J.R. (1974). The effects of ß-galac-tosidase activity and cyclic AMP on lactose-accelerated death. J. Gen. Microbiol. 85, 85–90.

    PubMed  CAS  Google Scholar 

  8. Clarke, P.H. (1974). The evolution of enzymes for the utilisation of novel substrates. Symp. Soc. Gen. Microbiol. 24, 183–217.

    CAS  Google Scholar 

  9. Dawes, E.A. and Senior, P.J. (1973). The role and regulation of energy reserve polymers in micro-organisms. Adv. Microbial Physiol. 10, 135–266.

    Article  CAS  Google Scholar 

  10. Dawes, E.A., Midgley, M. and Whiting, P.H. (1976). Control of transport systems for glucose, gluconate and 2-oxo-gluconate, and of glucose metabolism in Pseudomonas aeruginosa. In: Continuous Culture 6 (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds.) pp 195–207. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  11. Dicks, J.W. and Tempest, D.W. (1967). Potassium-ammonium antagonism in polysaccharide synthesis by Aerobacter aevogenes. Biochim. biophys. Acta 136, 176–179.

    Article  PubMed  CAS  Google Scholar 

  12. Ellwood, D.C. and Tempest, D.W. (1969). Control of teichoic acid and teichuronic acid biosynthesis in chemostat cultures of Bacillus subtilis var niger. Biochem. J. 111, 1–5.

    PubMed  CAS  Google Scholar 

  13. Ellwood, D.C. and Tempest, D.W. (1972). Effects of environment on bacterial wall content and compostion. Adv. Microbial Physiol. 7, 83–117.

    Article  CAS  Google Scholar 

  14. Evans, C.G.T., Herbert, D. and Tempest, D.W. (1970). The continuous cultivation of micro-organisms 2. Construction of a chemostat. In: Methods in Microbiology (J.R. Norris and D. W. Ribbons, eds.) pp 277–327. Academic Press, London.

    Google Scholar 

  15. Faik P. and Kornberg, H.L. (1973). Isolation and properties of E. coli mutants affected in gluconate uptake. FEBS Lett. 32, 260–264.

    Article  PubMed  CAS  Google Scholar 

  16. Ghuysen, J.M. (1977). Biosynthesis and assembly of bacterial walls. Cell Surface Reviews, 4, 463–569.

    CAS  Google Scholar 

  17. Harder, W. and Veldkamp, H. (1971). Competition of marine psychrophilic bacteria at low temperatures. Antonie van Leeuwen-hoek, 37, 51–63.

    Article  CAS  Google Scholar 

  18. Hartley, B.S., Burleigh, B.D., Midwinter, G.G. Moore, C.H. Morris, H.R.,Rigby, P.J.W., Smith, M.J. and Taylor, S.S. (1972) Where do new enzymes come from? In: Enzymes: Structure and Function, 8th FEBS Meeting, vol 29 (J. Drenth, R.A. Oosterbaan and C. Veeger, eds.) pp 151–176. North-Holland, Amsterdam.

    Google Scholar 

  19. Hayashi, S. and Lin, E.C.C. (1965). Capture of glycerol by cells of Escherichia coli. Biochim. biophys. Acta 94, 479–487.

    Article  PubMed  CAS  Google Scholar 

  20. Herbert, D. (1961). The chemical composition of micro-organisms as a function of their environment. Symp. Soc. gen. Microbiol. 11, 391–416.

    Google Scholar 

  21. Hueting, S., de Lange, T. and Tempest, D.W. (1978). Properties and regulation of synthesis of the glycerol dehydrogenase present in Klebsiella aerogenes NCTC 418 growing in chemostat culture. FEMS Microbiol. Lett 4, 185–189.

    Article  CAS  Google Scholar 

  22. Hueting, S., de Lange, T. and Tempest, D.W. (1979). Energy requirement for maintenance of the transmembrane potassium gradient in Klebsiella aerogenes NCTC 418: A continuous culture study. Arch. Microbiol. 123, 183–188.

    Article  PubMed  CAS  Google Scholar 

  23. Jones, C. W. (1977). Aerobic respiratory systems in bacteria. Symp. Soc. gen. Microbiol. 27, 23–59.

    CAS  Google Scholar 

  24. Kavanaugh, B.M. and Cole, J.A. (1976). The regulation of nitrogen metabolism in Escherichia coli. In: Continuous Culture 6 (A.C.R. Dean, D.C. Ellwood, C.G.T. Evans and J. Melling, eds.) pp 184–194. Ellis Horwood Ltd., Chichester.

    Google Scholar 

  25. Kjeldgaard, N.O. and Kurland, CG. (1963). The distribution of soluble and ribosomal RNA as a function of the growth rate J. molec. Biol. 6, 341–351.

    Article  CAS  Google Scholar 

  26. Koch, A.L. (1971). The adaptive responses of Escherichia coli to a feast and famine existence. Adv. Microbial Physiol. 6, 147–217.

    Article  CAS  Google Scholar 

  27. Kornberg, H.L. (1973). Fine control of sugar uptake by Escherichia coli. In: Rate Control of Biological Processes. 17th Symp. Soc. exptl. Biol. (D.D. Davies, ed.) pp 175–193. University Press, Cambridge.

    Google Scholar 

  28. Kornberg, H.L. (1976). Genetics in the study of carbohydrate transport by bacteria. J. gen. Microbiol. 96, 1–16.

    PubMed  CAS  Google Scholar 

  29. Kubitschek, H..E. (1974). Operation of selection pressure on microbial populations. Symp. Soc. gen. Microbiol. 24, 105–130.

    Google Scholar 

  30. Kundig, W. (1974). Molecular interactions in the bacterial phosphoenolpyruvate phosphotransferase system (PTS). J. Supramol. Structure. 2, 695–714.

    Article  CAS  Google Scholar 

  31. Kundig, W., Ghosh, S. and Roseman, S. (1964). Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc. Nat. Acad. Sci. U.S.A., 52, 1967–2074.

    Article  Google Scholar 

  32. Lin, E.C.C., Levin, A.P. and Magasanik, B. (1960). The effect of aerobic metabolism on the inducible glycerol dehydrogenase of Aevobaotev aevogenes. J. biol. Chem. 235, 1824–1829.

    PubMed  CAS  Google Scholar 

  33. Neijssel, O.M. (1976). The significance of overflow metabolism in the physiology and growth of Klebsiella aerogenes. Thesis: University of Amsterdam.

    Google Scholar 

  34. Neijssel, O.M. (1977). The effect of 2,4-dinitrophenol on the growth of Klebsiella aevogenes NCTC 418 in aerobic chemo-stat cultures. FEMS Microbiol. Lett. 1, 47–50.

    Article  CAS  Google Scholar 

  35. Neijssel, O.M. and Tempest, D.W. (1975). The regulation of carbohydrate metabolism in Klebsiella aevogenes NCTC 418 organisms, growing in chemostat culture. Arch. Microbiol. 106, 251–258.

    Article  PubMed  CAS  Google Scholar 

  36. Neijssel, O.M., Hueting, S., Crabbendam, K.J. and Tempest, D.W. (1975). Dual pathways of glycerol assimilation in Klebsiella aevogenes NCIB 418. Their role and possible functional significance. Arch. Microbiol. 104, 83–87.

    Article  PubMed  CAS  Google Scholar 

  37. Nelson, D.L. and Kennedy, E.P. (1972). Transport of magnesium by a repressible and a nonrepressible system in Esoheviohia ooli. Proc. Nat. Acad. Sci. U.S.A. 69, 1091–1093.

    Article  CAS  Google Scholar 

  38. Osborn, M.J., Rick, P.D., Lehmann, V., Rupprecht, E. and Singh, M. (1974). Structure and biogenesis of the cell envelope of Gram-negative bacteria. Ann. N.Y. Acad. Sci. 235, 52–65.

    Article  PubMed  CAS  Google Scholar 

  39. Pollock, M.R. (1961). The measurements of the liberation of penicillinase from Bacillus subtilis. J. gen. Microbiol. 26, 239–253.

    PubMed  CAS  Google Scholar 

  40. Postgate, J.R. and Hunter, J.R. (1964). Accelerated death of Aevobaotev aevogenes starved in the presence of growth-limiting substrates. J. gen. Microbiol. 34, 459–473.

    PubMed  CAS  Google Scholar 

  41. Rhoads, D.B. and Epstein, W. (1977). Energy coupling to net K+ transport in Esoheviohia ooli. J. Biol. Chem. 252, 1394–1401.

    PubMed  CAS  Google Scholar 

  42. Rogers, H.J. and Perkins, H.R. (1968). Cell Walls and Membranes. E. F. and N. Spon Ltd., London.

    Google Scholar 

  43. Stouthamer, A.H. (1977). Energetic aspects of the growth of micro-organisms. Symp. Soc. gen. Microbiol. 27, 285–315.

    CAS  Google Scholar 

  44. Sturman, A.J. and Archibald, A.R. (1978). Conservation of phage receptor material at the polar caps of Bacillus subtilis W23. FEMS Microbiol. Lett. 4, 255–259.

    Article  Google Scholar 

  45. Tempest, D.W. (1978). The biochemical significance of microbial growth yields: A reassessment. Trends in Biochem. Sci. 2, 180–184.

    Article  Google Scholar 

  46. Tempest, D.W. and Hunter, J.R. (1965). The influence of temperature and pH value on the macromolecular composition of magnesium-limited and glycerol-limited Aerobacter aerogenes growing in a chemostat. J. gen. Microbil. 41, 267–273.

    CAS  Google Scholar 

  47. Tempest, D.W. and Neijssel, O.M. (1978). Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments. Adv. Microbial Ecol. 2, 105–153.

    Article  Google Scholar 

  48. Tempest, D.W., Dicks, J.W. and Meers, J.L. (1967). Magnesium-limited growth of Bacillus subtilis, in pure and mixed cultures in a chemostat. J. gen. Microbiol. 43, 139–147.

    Google Scholar 

  49. Tempest, D.W., Hicks J.W. and Ellwood, D.C. (1968). Influence of growth condition on the concentration of potassium in Bacillus subtitis var. niger and its possible relationship to cellular ribonucleic acid, teichoic acid and teichuronic acid. Biochem. J. 106, 237–243.

    PubMed  CAS  Google Scholar 

  50. Tempest, D.W., Meers, J.L. and Brown, C.M. (1970). Synthesis of glutamate in Aerobaoter aerogenes by a hitherto unknown route. Biochem. J. 117, 405–407.

    PubMed  CAS  Google Scholar 

  51. Veldkamp, H. and Jannasch, H.W. (1972). Mixed culture studies with the chemostat. J. appl. Chem. Biotechnol. 22, 105–123.

    Article  CAS  Google Scholar 

  52. Willsky, G.R. and Malamy, M.H. (1974). The loss of phoS periplasmic protein leads to a change in the specificity of a constitutive inorganic phosphate transport system in Escherichia coli. Biochem. Biophys. Res. Commun. 60, 226–233.

    Article  CAS  Google Scholar 

  53. Willsky, G.R. and Malamy, M.H. (1976). “Control of” the synthesis of alkaline phosphatase and the phosphate binding protein in Escherichia coli. J. Bacteriol. 127, 595–609.

    PubMed  CAS  Google Scholar 

  54. Wouters, J.T.M. and Buysman, P.J. (1977). Production of some exocellular enzymes by Bacillus licheniformis 749/C in chemostat cultures. FEMS Microbiol. Lett. 1, 109–112.

    Article  CAS  Google Scholar 

  55. Zwaig, N., Kistler, W.S. and Lin, E.C.C. (1970). Glycerol-kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli. J. Bacteriol. 102, 753–759.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Tempest, D.W., Neijssel, O.M. (1981). Metabolic Compromises Involved in the Growth of Microorganisms in Nutrient-Limited (Chemostat) Environments. In: Hollaender, A., Rabson, R., Rogers, P., Pietro, A.S., Valentine, R., Wolfe, R. (eds) Trends in the Biology of Fermentations for Fuels and Chemicals. Basic Life Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3980-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3980-9_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3982-3

  • Online ISBN: 978-1-4684-3980-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics