Skip to main content

Perspectives for Genetic Engineering of Hydrocarbon Oxidizing Bacteria

  • Chapter
Trends in the Biology of Fermentations for Fuels and Chemicals

Part of the book series: Basic Life Sciences ((BLSC))

Abstract

Microbial hydrocarbon oxidation has interested biochemists and biotechnologists associated with the petrochemical industry for decades (34,40,55). While much of the initial interest was in the use of hydrocarbon-oxidizing organisms in petroleum prospecting, more recent attention has focused on the use of whole cells or microbial enzyme systems to carry out very specific biodegradations or bioconversions. Two developments in the past ten years have made it a realistic possibility to envisage the rational design and construction of microorganisms for specific breakdown or interconversion of hydrocarbon substrates: (i) Rheinwald’s observation that the genes for camphor oxidation are located on a transmissible plasmid (74,75), which quickly led to the discovery of many other transmissible plasmids in soil organisms that encode catabolic pathways for hydrocarbon substrates, and (ii) the development of in vitro and in vivo methods for the molecular cloning of DNA segments into a variety of plasmid vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baptist, J.N., R.K. Gholson and M.J. Coon. 1963. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim. Biophys. Acta 69:40–47.

    Article  PubMed  CAS  Google Scholar 

  2. Bassford, P., J. Beckwith, M. Berman, E. Brickman, M. Casadaban, L. Guarente, I. Saint-Girons, A. Sarthy, M. Schwartz, H. Shuman and T. Silhavy. 1980. Genetic fusions of the lao operon: A new approach to the study of biological processes. Pp 245–262, in The 0peron, J. H. Miller and W.S. Reznikoff (eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  3. Bayley, S.A., D.W. Morris and P. Broda. 1979. The relationship of degradative and resistance pasmids of Pseudomonas belonging to the same incompatibility group. Nature 280:338–339.

    Article  PubMed  CAS  Google Scholar 

  4. Benedik, M., M. Fennewald and J. Shapiro. 1977. Transposition of a 3-lactamase locus from RP1 into P. putida degradative Plasmids. J. Bacteriol. 129:809–814.

    PubMed  CAS  Google Scholar 

  5. Benson, S., M. Fennewald, J. Shapiro and C. Huettner. 1977. Fractionation of inducible alkane hydroxylase activity in P. putida and characterization of hydroxylase-negative plasmid mutations. J. Bacteriol. 132:614–621.

    PubMed  CAS  Google Scholar 

  6. Benspn, S., M. Oppici, M. Fennewald and J. Shapiro. Regulation of membrane proteins by the Pseudomonas plasmid alk (alkane utilization) regulon. J. Bacteriol. 140:754–762.

    Google Scholar 

  7. Benson, S. and J. Shapiro. 1976. Plasmid-determined alcohol dehydrogenase in alkane-utilizing strains of Pseudomonas putida. J. Bacteriol. 126:794–798.

    PubMed  CAS  Google Scholar 

  8. Benson, S. and J. Shapiro. 1978. TOL is a broad host-range plasmid. J. Bacteriol. 135:278–280.

    PubMed  CAS  Google Scholar 

  9. Chakrabarty, A.M. 1972. Genetic basis of the biodegradation of salicylate in Pseudomonas, J. Bacteriol. 112:815–823.

    PubMed  CAS  Google Scholar 

  10. Chakrabarty, A.M. 1973. Genetic fusion of incompatible Plasmids in Pseudomonas. Proc. Nat. Acad. Sci., U.S.A. 70:1641–1644.

    Article  CAS  Google Scholar 

  11. Chakrabarty, A.M. 1976. Plasmids in Pseudomonas. Ann. Rev. Genet. 10:7–30.

    Article  PubMed  CAS  Google Scholar 

  12. Chakrabarty, A.M., G. Chou and I.C. Gunsalus. 1973. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc. Nat. Acad. Sci., U.S.A. 70:1137–1140.

    Article  CAS  Google Scholar 

  13. Clarke, P.H. and L.N. Ornston. 1975. Metabolic pathways and regulation: I and II. Pp. 191–340, in Genetics and Biochemistry of Pseudomonas, P.H. Clarke and M.H. Richmond (eds.), John Wiley and Sons, Ltd., London.

    Google Scholar 

  14. De Frank, J.J. and D.W. Ribbons. 1977. p-Cymene pathway in Pseudomonas putida: Initial reactions. J. Bacteriol. 129:1356–1364.

    Google Scholar 

  15. Dorn, E., M. Hellwig, W. Reineke and H.-J. Knackmuss. 1974. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch. Microbiol. 99:61–70.

    Article  PubMed  Google Scholar 

  16. Dorn, E. and H.-J. Knackmuss. 1978. Chemical structure and biodegradability of ha-ogenated aromatic compounds: Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown Pseudo-monad. Biochem. J. 174:73–84.

    PubMed  CAS  Google Scholar 

  17. Dorn, E. and H.-J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem. J. 174:85–94.

    PubMed  CAS  Google Scholar 

  18. Downing, R.G. and P. Broda. 1979. A cleavage map of the TOL plasmid of Pseudomonas putida mt-2. Mol. Gen. Genet. 177:189–191.

    Article  PubMed  CAS  Google Scholar 

  19. Drew, R.E., P.H. Clarke and W.J. Brammar. 1980. The construction in vitro of derivatives of bacteriophage lambda carrying the amidase genes of Pseudomonas aeruginosa. Molec. Gen. Genet. 177:311–320.

    Article  PubMed  CAS  Google Scholar 

  20. Dunn, N.W. and I.C. Gunsalus. 1973. Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 144:974–979.

    Google Scholar 

  21. Engesser, K.-H., E. Schmidt and H.-J Knackmuss. 1980. Adaptation of Aloaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-fluorobenzoate as growth substrate. Appl. Environ. Microbiol. 39:68–73.

    PubMed  CAS  Google Scholar 

  22. Evans, W.C., B.S.W. Smith, H.N. Fernley and J.J. Davies. 1971. Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem. J. 122:543–551.

    PubMed  CAS  Google Scholar 

  23. Faelen, M., A. Resibois and A. Toussaint. 1979. Mini-mu: An insertion element derived from temperate phage Mu-1. Cold Spring Harbor Symp. Quant. Biol. 43:1169–1177.

    Article  PubMed  CAS  Google Scholar 

  24. Fennewald, M., S. Benson and J. Shapiro. 1978. Plasmid-chromosome interactions in the Pseudomonas alkane system. Pp 170–173, in Microbiology 1978, D. Schlessinger (ed.), American Society for Microbiology, Washington, D.C.

    Google Scholar 

  25. Fennewald, M., S. Benson, M. Oppici and J. Shapiro. 1979. Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon. J. Bacteriol. 139:940–952.

    PubMed  CAS  Google Scholar 

  26. Fennewald, M., W. Prevatt, R. Meyer and J. Shapiro. 1978. Isolation of Inc P-2 plasmid DNA from Pseudomonas aeruginosa. Plasmid 1:164–173.

    Article  PubMed  CAS  Google Scholar 

  27. Fennewald, M. and J. Shapiro. 1977. Regulatory mutations of the Pseudomonas plasmid alk regulon. J. Bacteriol. 132:622–627.

    PubMed  CAS  Google Scholar 

  28. Fennewald, M. and J. Shapiro. 1979. Transposition of Tn7 in P. aeruginosa and isolation of alk::Tn7 mutations. J. Bacteriol 139:264–269.

    PubMed  CAS  Google Scholar 

  29. Fisher, P.R., J. Appleton and J.M. Pemberton. 1978. Isolation and characterization of the pesticide-degrading plasmid pJPl from Aloaligenes paradoxus. J. Bacteriol. 135:798–804.

    PubMed  CAS  Google Scholar 

  30. Franklin, F.C.H. and P.A. Williams. 1980. Construction of a partial diploid for the degradative pathway encoded by the TOL plasmid (pWWO) from Pseudomonas putida mt-2: Evidence for the positive nature of the regulation of xylR gene. Mol. Gen. Genet. 177:321–328.

    Article  PubMed  CAS  Google Scholar 

  31. Friello, D.A., J.R. Mylroie, D.T. Gibson, J.E. Rogers and A.M. Chakrabarty. 1976. XYL, a non-conjugative xylene-degradative plasmid in Pseudomonas Pxy. J. Bacteriol. 127:1217–1224.

    PubMed  CAS  Google Scholar 

  32. Gautier, F. and R. Bonewald. 1980. The use of plasmid R1162 and derivatives for gene cloning in the methanol-utilizing Pseudomonas AMI. Molec. Gen. Genet. 178:375–386.

    Article  PubMed  CAS  Google Scholar 

  33. Gholson, R.K., J.N. Baptist and M.J. Coon. 1963. Hydrocarbon oxidation by a bacterial enzyme system. II. Cofactor requirements for octanol formation from octane. Biochemistry 2:1155–1159.

    Article  PubMed  CAS  Google Scholar 

  34. Gibson, D.T. 1971. The microbial oxidation of aromatic hydrocarbons. Critical Review in Microbiology, pp. 199–223.

    Google Scholar 

  35. Grund, A., J. Shapiro, M. Fennewald, P. Bacha, J. Leahy, K. Markbreiter, M. Nieder and M. Toepfer. 1975. Regulation of alkane oxidation in Pseudomonas putida. J. Bacteriol. 123:546–556.

    PubMed  CAS  Google Scholar 

  36. Hansen, J.B. and R.H. Olsen. 1978. Isolation of large bacterial Plasmids and characterization of the P2 incompatibility group Plasmids pMGl and pMG5. J. Bacteriol. 135:227–238.

    PubMed  CAS  Google Scholar 

  37. Hartmann, J., W. Reineke and H.-J. Knackmuss. 1979. Metabolism of 3-chloro-4-chloro-, and 3,5-dichlorobenzoate by a pseudo-monad. Appl.Environ.Microbiol. 37L421–428.

    PubMed  CAS  Google Scholar 

  38. Hedges, R.W., A.E. Jacob and I.P. Crawford. 1977. Wide ranging plasmid bearing the Pseudomonas aeruginosa tryptophan synthase genes. Nature 267:283–284.

    Article  PubMed  CAS  Google Scholar 

  39. Heinaru, A.L., C.J. Duggleby and P. Broada. 1978. Molecular relationships of degradative plasmids determined by in situ hydridisation of their endonuclease generated fragments. Molec. Gen. Genet. 160:347–351.

    Article  PubMed  CAS  Google Scholar 

  40. Higgins, I.J., D.J. Best and R.C. Hammond. 1980. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 286:561–564.

    Article  PubMed  CAS  Google Scholar 

  41. Holloway, B.W. 1978. Isolation and characterization of a Rf plasmid in Pseudomonas aeruginosa. J. Bacteriol. 133:1078–1082.

    PubMed  CAS  Google Scholar 

  42. Holloway, B. and V. Krishnapillai. 1975. Bacteriophages and bacteriocins. Pp 99–132, in Genetics and Biochemistry of Pseudomonas, P.H. Clarke and M. H. Richmond (eds.), John Wiley and Sons, London.

    Google Scholar 

  43. Hopper, D.J. and P.D. Kemp. 1980. Regulation of enzymes of the 3,5-xylenol degradative pathway in Pseudomonas putida: Evidence for a plasmid. J. Bacteriol. 142:21–26.

    PubMed  CAS  Google Scholar 

  44. Hou, C.T., R. Patel, A. I. Laskin and N. Barnabe. 1979. Micro-oxidation of gaseous hydrocarbons: Epoxidation of C2 to C4 n-alkanes by methylotrophic bacteria. Appl.Environ.Microbiol. 38:127–134.

    PubMed  CAS  Google Scholar 

  45. Jacoby, G.A. and A.E. Jacob. 1977. Recombination between Pseudomonas aeruginosa plasmids of incompatibility groups P-l and P-2. Pp. 147–150, in DNA Insertion Elements, Plasmids and Episomes, A.I. Bukhari, J.A. Shapiro and S.L. Adhya (eds)., Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  46. Jacoby, G.A., J.E. Rogers, A.E. Jacob and R.W. Hedges. 1978. Transposition of Pseudomonas toluene-degrading genes and expression in Escherichia coli. Nature 274:179–180.

    Article  PubMed  CAS  Google Scholar 

  47. Jacoby, G.A. and J.A. Shapiro. 1977. Plasmids studied in Pseudomonas aeruginosa and other enteric bacteria. Pp. 639–656, in DNA Insertion Elements, Plasmids and Episomes, A. I. Bukhari, J. A. Shapiro and S. L. Adhya (eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  48. Knackmuss, H.-J. 1979. Halogenierte und sulfonierte Aromaten-Eine Herausforderung fur Aromaten abbauende Bakterien. Forum Mikrobiologie, June 1979:311–317.

    Google Scholar 

  49. Knackmuss, H.-J. and M. Hellwig. 1978. Utilization and co-oxidation of chlorinated phenols by Pseudomonas sp. B13. Arch. Microbiol. 117:1–7.

    Article  PubMed  CAS  Google Scholar 

  50. Korfhagen, T.R., L. Sutton and G.A. Jacoby. 1978. Classification and physical properties of Pseudomonas plasmids. Pp.221–624, in Microbiology 1978, D. Schlessinger (ed.), American Society for Microbiology, Washington, D.C.

    Google Scholar 

  51. Krylov, V.N., V.G. Bogush and J.A. Shapiro. 1980 Pseudomonas aeruginosa phages whose DNA s tructure is similar to Mul phage DNA. I. General description, localization of endonuclease-sensitive sites in DNA, and the structure of D3112 phages homoduplexes. Genetika 16:824–832 (in Russian).

    CAS  Google Scholar 

  52. Leadbetter, E.R.L. and J.W. Foster. 1959. Incorporation of molecular oxygen in bacterial cells utilizing hydrocarbons for growth. Nature 184:1428–1429.

    Article  PubMed  CAS  Google Scholar 

  53. Lederberg, E.M. and S.N. Cohen. 1974. Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J. Bacteriol. 119:1072–1074.

    PubMed  CAS  Google Scholar 

  54. McKenna, E.J. and M.J. Coon. 1970. Enzymatic ω-oxidation of Pseudomonas oleovorans. J. Biol. Chem. 245:3882–3889.

    PubMed  CAS  Google Scholar 

  55. McKenna, E.J. and R.E. Kallio. 1965. The biology of hydrocarbons. Ann.Rev.Microbiol. 19:183–208.

    Article  CAS  Google Scholar 

  56. Meyer, R.J. 1979. Expression of incompatibility by derivatives of the broad host-range Inc P-l plasmid RK2. Molec.Gen.Genet. 177:155–161.

    Article  PubMed  CAS  Google Scholar 

  57. Meyer, R., G. Boch and J. Shapiro. 1979. Transposition of DNA inserted into deletions of the Tn5 kanamycin resistance element. Moled.Gen.Genet. 171:7–13.

    Article  CAS  Google Scholar 

  58. Murray, K., C.J. Duggleby, J.M. Sala-Trepat and P.A. Williams. 1972. The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arivitla mt-2. Euro. J. Biochem. 28:301–310

    Article  CAS  Google Scholar 

  59. Nagahari, K. and K. Sakaguchi. 1978. RSF1010 plasmid as a potentially useful vector in Pseudomonas species. J. Bacteriol. 133 1527–1529.

    PubMed  CAS  Google Scholar 

  60. Nagahari, K., T. Tanaka, F. Hishinuma, M. Kuroda and K. Sakaguchi. 1977. Control of tryptophan synthetase amplified by varying the numbers of composite plasmids in Escherichia coli cells. Gene 1:141–152.

    Article  PubMed  CAS  Google Scholar 

  61. Nakazawa, T., E. Hayashi, T. Yokota, Y. Ebina and A. Nakazawa. 1978. Isolation of TOL and RP4 recombinants by integrative suppression. J. Bacteriol. 134:270–277.

    PubMed  CAS  Google Scholar 

  62. Nakazawa, T., S. Inouye and A. Nakazawa. 1980. Physical and functional mapping of RP4-T0L plasmid recombinants: Analysis of insertion and deletion mutants. J. Bacteriol. 144:222–231.

    PubMed  CAS  Google Scholar 

  63. Nakazawa, T. and T. Yokota. 1973. Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: Demonstration of two benzoate pathways. J. Bacteriol. 115:262–267.

    PubMed  CAS  Google Scholar 

  64. Nieder, M. and J. Shapiro. 1975. Physiological function of the Pseudomonas putida PpG6 (Pseudomonas oleovorans) and alkane hydroxylase: Monoterminal oxidation of alkanes and fatty acids. J. Bacteriol. 122:93–98.

    PubMed  CAS  Google Scholar 

  65. Ornston, L.N. 1971. Regulation of catabolic pathways in Pseudomonas. Bacteriol. Rev. 35:87–116.

    PubMed  CAS  Google Scholar 

  66. Patel, R.N., C.T. Hou, A.I. Laskin, A. Felix and P. Derelanko. 1979. Microbial oxidation of gaseous hydrocarbons. II. Hydro-xylation of alkanes and epoxidation of alkenes by cell-free particulate fractions of methane-utilizing bacteria. J. Bacteriol. 139:675–679.

    PubMed  CAS  Google Scholar 

  67. Pemberton, J.M., B. Corney and R.H. Don. 1979. Evolution and spread of pesticide degrading ability among soil microorganisms. Pp. 287–299, in Plasmids of Medical, Environmental and Commercial Importance, K. N. Timmis and A. Puehler (eds.), Elsevier.

    Google Scholar 

  68. Pemberton, J.M. and P.R. Fisher. 1977.2,4-D plasmids and persistence. Nature 268:50–51.

    Article  Google Scholar 

  69. Peterson, J.A., D. Basu and M.J. Coon. 1966. Enzymatic co-oxidation. I. Electron carriers in fatty acid and hydrocarbon oxidation. J. Biol.Chem. 241:5162–5164.

    PubMed  CAS  Google Scholar 

  70. Poh, C.L. and R.C. Bayly. 1980. Evidence for isofunctional enzymes used in m-cresol and 2,5-xylenol degradation via the gentisate pathway in Pseudomonas alcaligenes. J. Bacteriol. 143–59–69.

    PubMed  CAS  Google Scholar 

  71. Reineke, W. and H.-J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds: Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim. Bio-phys.Acta 542:412–423.

    CAS  Google Scholar 

  72. Reineke, W. and H.-J. Knackmuss. 1979. Construction of halo-aromatics utilizing bacteria. Nature 277:385–386.

    Article  PubMed  CAS  Google Scholar 

  73. Reineke, W. and H.-J. Knackmuss. 1980. Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J. Bacteriol. 142:467–473.

    PubMed  CAS  Google Scholar 

  74. Rheinwald, J.G. 1970. The genetic organization of peripheral metabolism. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. M.S. thesis, University of Illinois, Urbana.

    Google Scholar 

  75. Rheinwald, J.G., A.M. Chakrabarty and I.C. Gunsalus. 1973. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc.Nat.Acad.Sci. U.S. 70:885–889.

    Article  CAS  Google Scholar 

  76. Ribbons, D.W. 1975. Oxidation of C1 compounds by particulate fractions from Methylooooous oapsulatus: Distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase). J. Bacteriol. 122:1351–1363.

    PubMed  CAS  Google Scholar 

  77. Ruettinger, R.T., G.R. Griffith and M.J. Coon. 1977. Characterization of the ω-hydroxylase of Pseudomonas oteovovans as a nonheme iron protein. Arch.Biochem. Biophys. 183:528–537.

    Article  PubMed  CAS  Google Scholar 

  78. Ruettinger, R.T., S.T. Olson, R.F. Boyer and M.J. Coon. 1974. Identification of the ω-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein requiring phospholipid for catalytic activity. Biochem.Biophys.Res.Comm. 57:1011–1017.

    Article  PubMed  CAS  Google Scholar 

  79. Sano, Y. and M. Kageyame. 1977. Transoformation of Pseudomonas aeruginosa by plasmid DNA. J.Gen.Appl.Microbiol. 23:183–186.

    Article  CAS  Google Scholar 

  80. Schreiber, A., M. Hellwig, E. Dorn, W. Reineke and H.-J. Knackmuss. 1980. Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl.Enviorn.Microbiol. 39:58–67.

    CAS  Google Scholar 

  81. Shapiro, J.A. 1977. Bacterial plasmids. Introduction, Appendix B. Pp. 601–606, in DNA Insertion Elements, Plasmids and Episomes, A.I. Bukhari, J.A. Shapiro and S.L. Adhya (eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  82. Shapiro, J.A., S. Benson, M. Fennewald, A. Grund and M. Nieder. 1976. Genetics of alkane utilization. Pp. 568–571, in Microbiology 1976, D. Schlessinger (ed.), American Society for Microbiology, Washington, D.C.

    Google Scholar 

  83. Tassin, J.P., C. Celier and J.P. Vandercasteele. 1973. Purification and properties of a membrane bound alcohol dehydrogenase involved in oxidation of long chain hydrocarbons by Pseudomonas aeruginosa. Biochim.Biophys.Acta 315:220–232.

    CAS  Google Scholar 

  84. van der Linden, A.C. 1963. Epoxidation of a-olefins by heptane-grown Pseudomonas aeruginosa. Biochim.Biophys.Acta 77:157–159.

    Article  Google Scholar 

  85. van der Liden, A.C. and G.T.E. Thijse. 1965. The mechanism of microbial oxidation of petroleum hydrocarbons. Adv.Enzymol. 27:469–545.

    Google Scholar 

  86. van Eyk, J. and T. J. Bartels. 1970. Paraffin oxidation in Pseudomonas aeruginosa. II. Gross fractionation of the enzyme system into soluble and particulate components. J. Bacteriol. 104:1065–1073.

    PubMed  Google Scholar 

  87. Wadzinski, A.M. and D.W. Ribbons. 1975. Oxidation of C1 compounds by particulate fractions from Methytoooecus oapsulatus: Properties of methanol oxidase and methane dehydrogenase. J. Bacteriol. 122:1364–1374.

    PubMed  CAS  Google Scholar 

  88. White, G.P. and N.W. Dunn. 1977. The apparent fusion of the TOL plasmid with the R91 drug resistance plasmid in Pseudomonas aeruginosa. Aust. J. Biol. Sci. 30:345–355.

    PubMed  CAS  Google Scholar 

  89. White, G.P. and N.W. Dunn. 1978. Evidence for transuctional shortening of the plasmid obtained by recombination between the TOL catabolic plasmid and the R91 R plasmid. Genet.Res. 31:93–96.

    Article  PubMed  CAS  Google Scholar 

  90. Williams, P.A. 1979. Plasmids involved in the catabolism of aromatic hydrocarbons. Pp. 154–159, in Genetics of Industrial Microorganisms, O.K. Sebek and A. I. Laskin (ed.), American Society for Microbiology, Washington, D.C.

    Google Scholar 

  91. Williams, P.A. and K. Murray. 1974. Metabolism of benzoate and methyl benzoate by Pseudomonas iputida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. J. Bacteriol. 120:415–423.

    Google Scholar 

  92. Williams, P.A. and M.J. Worsey. 1976. Ubiquity of plasmids in coding for toluene and xylene metabolism in soil bacteria: Evidence for the existence of new TOL plasmids. J. Bacteriol. 125:818–828.

    PubMed  CAS  Google Scholar 

  93. Windass, J.D., M.J. Worsey, E.M. Pioli, D. Pioli, P.T. Barth, K. T. Atherton, E.C. Dart, D. Byron, K. Powell and P. J. Senin. 1980. Improved conversion of methanol to single-cell protein by Methylophilus methylotrophus. Nature 287:396–401.

    Article  PubMed  CAS  Google Scholar 

  94. Wong, C.L. and N.W. Dunn. 1976. Combined chromosomal and plasmid encoded control for the degradation of phenol in Pseudomonas putida. Genet.Res. 27:405–412.

    Article  PubMed  CAS  Google Scholar 

  95. Worsey, M.J., F.C.H. Franklin and P.A. Williams. 1978. Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. J. Bacteriol. 124:7–13.

    Google Scholar 

  96. Worsey, M.J. and P.A. Williams. 1977. Characterization of a spontaneously occurring mutant of the TOL20 plasmid in Pseudomonas putida MT20: Possible regulatory implications. J. Bacteriol. 124:7–13.

    Google Scholar 

  97. Worsey, M.J. and P.A. Williams. 1977. Characterization of a spontaneously occurring mutant of the TOL20 plasmid in Pseudomonas putida MT20: Possible regulatory implications. J. Bacteriol. 130:1149–1158.

    PubMed  CAS  Google Scholar 

  98. Yano, K. and Nishi, T. 1980. pKJl, a naturally occurring con-jugative plasmid coding for toluene degradation and resistance to streptomycin and sulfonamides. J. Bacteriol. 143:552–560.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Shapiro, J.A. et al. (1981). Perspectives for Genetic Engineering of Hydrocarbon Oxidizing Bacteria. In: Hollaender, A., Rabson, R., Rogers, P., Pietro, A.S., Valentine, R., Wolfe, R. (eds) Trends in the Biology of Fermentations for Fuels and Chemicals. Basic Life Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3980-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3980-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3982-3

  • Online ISBN: 978-1-4684-3980-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics