Skip to main content

Abstract

The presence and absence of oxygen divides the biosphere into oxic and anoxic ecosystems, provides aerobic and anaerobic living conditions and enables either aerobiontic or anaerobiontic organisms to grow. As an electron acceptor of a high positive redox-potential oxygen enables aerobiontic cells to channel the substrate-derived electrons through a long respiratory chain and to generate metabolic energy with great efficiency. Oxygen enables cells to utilize aliphatic, aromatic and isoprenoid hydrocarbons as substrates which are not biodegradable under anaerobic conditions. There is no doubt that the beneficial effects of oxygen prevail. Looking closer, however, one realizes that almost all organisms, irrespective of their metabolic type, are exposed to possible oxygen toxicity. Oxygen exerts detrimental effects on anaerobionts such as the strictly anaerobic bacteria like Succinivibrio, Butyrivibrio, Clostridium haemolyticum and the methanogenic bacteria (Loesche, 1969). But even the strictly aerobic bacteria and higher organisms suffer from damage by oxygen (Gottlieb, 1975). This is seen in the defense mechanisms which enable aerobic organisms to cope with oxygen toxicity. At least some of the toxic species of oxygen, such as hydrogen peroxide, superoxide anions, hydroxyl radicals and singlet oxygen, produced by the metabolizing cell can be detoxified or quenched by special enzymes such as superoxide dismutase, catalase, peroxidases and carotenoids and possibly other pigments (Fridovich, 1976; Hassan and Fridovich, 1978; Krinsky, 1978; Morris, dy1975, 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, Ch., Mayer, F., and Schlegel, H. G., 1976, Identification and physiological characterization of the nitrogen fixing bacterium Corynebac-terium autotrophicum GZ 29, Arch. Microbiol., 108:17.

    Article  PubMed  CAS  Google Scholar 

  • Cammack, R., Lalla-Maharajh, W. V., and Schneider, K., 1980, EPR studies of some oxygen-stable hydrogenases, in: “Interactions Between Iron and Proteins in Oxygen and Electron Transport,” C. Ho, ed., Elsevier-North Holland, New York.

    Google Scholar 

  • Elstner, E. F., and Heupel, A., 1976, Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase, Anal. Biochem., 70:616.

    Article  PubMed  CAS  Google Scholar 

  • Fridovich, I., 1976, Oxygen radicals, hydrogen peroxide, and oxygen toxicity, in: “Free Radicals in Biology”, Vol. 1, W. A. Pryor, ed., Academic Press, New York.

    Google Scholar 

  • Gogotov, J. N., and Schlegel, H. G., 1974, N2−fixation by chemo-autotrophic hydrogen bacteria, Arch. Microbiol., 97:359.

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb, S. F., 1975, Effect of hyperbaric oxygen on microorganisms, in: “Annual Review of Microbiology,” Vol. 25, C. E. Clifton, S. Raffael, and M. P. Starr, eds., Annual Review Inc., Palo Alto, California.

    Google Scholar 

  • Harrison, D. E. F., 1973, Growth, oxygen, and respiration, Crit. Rev. Microbiol., 2:185.

    Article  CAS  Google Scholar 

  • Harrison, D. E. F., 1976, The regulation of respiration rate in growing bacteria, in: “Advances in Microbial Physiology,” Vol. 14, A. H. Rose, and D. W. Tempest, eds., Academic Press, London.

    Google Scholar 

  • Hassan, H. M., and Fridovich, I., 1978, Superoxide dismutase and its role for survival in the presence of oxygen, in: “Life Sciences Research Report 13: Strategies of Microbial Life in Extreme Environments,” M. Shilo, ed., Verlag Chemie, Weinheim.

    Google Scholar 

  • Ibrahim, M. E. K., 1979, Sauerstoffversorgung von Mikroorganismen durch Wasserstoffperoxid, Ph.D. Thesis.

    Google Scholar 

  • Ibrahim, M. E. K., and Schlegel, H. G., 1980a, Oxygen supply to bacterial suspensions of high cell densities by hydrogen peroxide, Biotechnol. Bioeng., in press.

    Google Scholar 

  • Ibrahim, M. E. K., and Schlegel, H. G., 1980b, Efficiency of bovine liver catalase as a catalyst to cleave H2O2 added continually to buffer solutions, Biotechnol. Bioeng., in press.

    Google Scholar 

  • King, W. R., and Andersen, K., 1980, Efficiency of CO2 fixation in the glycollate oxidoreductase mutant of Alcaligenes eutrophus which exports fixed carbon as glycollate, Arch. Microbiol., in press.

    Google Scholar 

  • Krinsky, N. I., 1978, Carotenoid pigments: Multiple mechanisms for coping with the stress of photosensitized oxidations, in: “Life Sciences Research Report 13: Strategies of Microbial Life in Extreme Environments,” M. Shilo, ed., Verlag Chemie, Weinheim.

    Google Scholar 

  • Lepo, J. E., Hanus, F. J., and Evans, H. J., 1980, Chemoautotrophic growth of hydrogen-uptake-positive strains of Rhizobium japonicum, J. Bacteriol., 141:664.

    PubMed  CAS  Google Scholar 

  • Loesche, W. J., 1969, Oxygen sensitivity of various anaerobic bacteria, Appl. Microbiol., 18:723.

    PubMed  CAS  Google Scholar 

  • Lorimer, G. H., and Andrews, T. G., 1980, The C2 photo—and chemo-respiratory carbon oxidation cycle, Plant Biochem., in press.

    Google Scholar 

  • Malik, K. A., and Schlegel, H. G., 1980, Enrichment and isolation of new nitrogen-fixing hydrogen bacteria, FEMS Microbiol. Lett., 8:101.

    Article  CAS  Google Scholar 

  • Morris, J. G., 1975, The physiology of obligate anaerobiosis, Adv. Microb. Physiol., 12:169.

    Article  CAS  Google Scholar 

  • Morris, J. G., 1978, Nature of oxygen toxicity in anaerobic microorganisms, in: “Life Sciences Research Report 13: Strategies of Microbial Life in Extreme Environments,” M. Shilo, ed., Verlag Chemie, Weinheim.

    Google Scholar 

  • Mortenson, L. E., and Chen, J. S., 1974, Hydrogenase, in: “Microbial Iron Metabolism,” J. B. Nielands, ed., Academic Press, New York.

    Google Scholar 

  • Mortenson, L. E., and Chen, J. S., 1976, Properties of the hydrogenase from Clostridium pasteurianum, in: “Microbial Production and Utilization of Gases (H2, CH4, CO2),” H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds., E. Goltze KG, Göttingen.

    Google Scholar 

  • Nakos, G., and Mortenson, L. E., 1971, Structural properties of hydrogenase from Clostridium pasteurianum W5, Biochem., 10:2442.

    Article  CAS  Google Scholar 

  • Palleroni, N. J., and Palleroni, A. V., 1978, Alcaligenes latus, a new species of hydrogen-utilizing bacteria, Int. J. Syst. Bacteriol., 28:416.

    Article  Google Scholar 

  • Riley, M., and Anilionis, A., 1978, Evolution of the bacterial genome, in: “Annual Review of Microbiology,” Vol. 32, M. P. Starr, J. L. Ingraham, and S. Raffael, eds., Annual Review Inc., Palo Alto, California.

    Google Scholar 

  • Robson, R. L., 1979, Characterization of an oxygen-stable nitrogen-ase complex isolated from Azotobacter chroococcum, Biochem. J., 181:569.

    PubMed  CAS  Google Scholar 

  • Schink, B., 1978, Membrane-bound hydrogenase from Alcaligenes eutrophus: Biochemical and immunological characterization of the solubilized and purified enzyme, in: “Hydrogenases: Their Catalytic Activity, Structure and Function,” H. G. Schlegel, and K. Schneider, eds., Erich Goltze KG, Göttingen.

    Google Scholar 

  • Schink, B., and Schlegel, H. G., 1978, Hydrogen metabolism in aerobic hydrogen-oxidizing bacteria, Biochimie, 60:297.

    Article  PubMed  CAS  Google Scholar 

  • Schink, B., and Schlegel, H. G., 1979, The membrane-bound hydrogenase of Alcaligenes eutrophus. I. Solubilization, purifica-tion, and biochemical properties, Biochim. Biophys. Acta, 567:315.

    PubMed  CAS  Google Scholar 

  • Schlegel, H. G., 1977, Aeration without air. Oxygen supply by hydrogen peroxide, Biotechnol. Bioeng., 19:413.

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, H. G., and Schneider, K., 1978, Introductory report: Distribution and physiological role of hydrogenases in microorganisms, in: “Hydrogenases: Their Catalytic Activity, Structure and Function,” H. G. Schlegel, and K. Schneider, eds., Erich Goltze KG, Göttingen.

    Google Scholar 

  • Schlegel, H. G., and Vollbrecht, D., 1980, Formation of the dehydrogenases for lactate, ethanol and butanediol in the strictly aerobic bacterium Alcaligenes eutrophus, J. Gen. Microbiol., 117:475.

    CAS  Google Scholar 

  • Schneider, K., and Cammack, R., 1978, Soluble hydrogenase from Alcaligenes eutrophus, an iron-sulfur flavoprotein, in: “Hydrogenases: Their Catalytic Activity, Structure and Function,” H. G. Schlegel, and K. Schneider, eds., Erich Goltze KG, Göttingen.

    Google Scholar 

  • Schneider, K., Cammack, R., Schlegel, H. G., and Hall, D. O., 1979, The iron-sulfur centers of soluble hydrogenase from Alcaligenes eutrophus, Biochim. Biophys. Acta, 578:445.

    PubMed  CAS  Google Scholar 

  • Schneider, K., and Schlegel, H. G., 1976, Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16, Biochim. Biophys. Acta, 452:66.

    PubMed  CAS  Google Scholar 

  • Schneider, K., and Schlegel, H. G., 1977, The NAD reducing soluble hydrogenase from Alcaligenes eutrophus, in: “Second International Symposium—Microbial Growth on C1-Compounds,” G. K. Skryabin, M. V. Ivanov, E. N. Kondratjeva, G. A. Zavarzin, Yu. A. Trotsenko, and A. I. Nesterov, eds., Scientific Centre for Biological Research USSR, Academy of Sciences, Pushchino.

    Google Scholar 

  • Schneider, K., and Schlegel, H. G., 1978, Identification and quantitative determination of the flavin component of soluble hydrogenase from Alcaligenes eutrophus, Biochem. Biophys. Res. Commun., 84:564.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, K., and Schlegel, H. G., 1980, Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16, Biochem. J., in press.

    Google Scholar 

  • Simpson, F. B., Maier, R. J., and Evans, H. J., 1979, Hydrogen-stimulated CO2 fixation and coordinate induction of hydrogenase and ribulosebisphosphate carboxylase in a H2−uptake positive strain of Rhizobium japonicum, Arch. Microbiol., 123:1.

    Article  CAS  Google Scholar 

  • Vollbrecht, D., and Schlegel, H. G., 1978, Excretion of metabolites by hydrogen bacteria. II. Influences of aeration, pH, temperature and age of cells, Eur. J. Appl. Microbiol. Biotech-nol., 6:157.

    Article  CAS  Google Scholar 

  • Vollbrecht, D., and Schlegel, H. G., 1979, Excretion of metabolites by hydrogen bacteria. III. D(−)−3-hydroxybutanoate, Eur. J. Appl. Microbiol. Biotechnol., 7:259.

    Article  CAS  Google Scholar 

  • Vollbrecht, D., El Nawawy, M. A., and Schlegel, H. G., 1978, Excretion of metabolites by hydrogen bacteria. I. Autotrophic and heterotrophic fermentations, Eur. J. Appl. Microbiol. Biotechnol., 6:145.

    Article  CAS  Google Scholar 

  • Vollbrecht, D., Schlegel, H. G., Stoschek, G., and Janczikowski, A., 1979, Excretion of metabolites by hydrogen bacteria. IV. Respiration rate-dependent formation of primary metabolites and of poly-3-hydroxybutanoate, Eur. J. Appl. Microbiol. Biotechnol., 7:276.

    Google Scholar 

  • Weiss, A. R., Schneider, K., and Schlegel, H. G., 1980, Purification and properties of the membrane-bound hydrogenase of Pseudomonas pseudoflava GA3, Curr. Microbiol., 3:317.

    Article  CAS  Google Scholar 

  • Wiegel, J., and Schlegel, H. G., 1976, Enrichment and isolation of nitrogen fixing hydrogen bacteria, Arch. Microbiol., 107:139.

    Article  PubMed  CAS  Google Scholar 

  • Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R., and Schlegel, H. G., 1978, Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov., Int. J. Syst. Bacteriol., 28:573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Schlegel, H.G. et al. (1981). Detrimental and Beneficial Effects of Oxygen Exerted on Hydrogen-Oxidizing Bacteria. In: Lyons, J.M., Valentine, R.C., Phillips, D.A., Rains, D.W., Huffaker, R.C. (eds) Genetic Engineering of Symbiotic Nitrogen Fixation and Conservation of Fixed Nitrogen. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3953-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3953-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3955-7

  • Online ISBN: 978-1-4684-3953-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics