Skip to main content

Optical Bistability Based Upon Atomic Correlation in a Small Volume

  • Chapter
Optical Bistability

Abstract

A model for optical bistability which emphasizes the effects of atomic pair correlation in a small volume is presented. A unitary transformation is introduced to remove the explicit time dependence of the original Hamiltonian and an ensemble representation for the system is imposed by introducing a ficticious, (“spin”) temperature in the rotating frame. The ensemble averages have the effect, in the results, of breaking the J2-symmetry intrinsic to the Hamiltonian. Adiabatic elimination of the field variables in the mean-field limit leads to a mean-field, atomic-level Stark-shift-dependent interatomic interaction. We use this retarded dipole-dipole interaction in a small volume, to de-rive the properties of the quasi-thermodynamic ensemble representing the system in the rotating frame, and obtain the equation of state relating the externally-applied field y to the internal field x and the inverse of the effective temperature βs. The equation shows hysteresis and bistability among the three quantities x, y, and βs for suitable values of the parameters in the model. Stability conditions in the hysteresis zone in the limit of a single radiation field mode are analyzed and the optical spectrum is derived. The results predict intrinsic mirrorless optical bistability in a small volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. M. Bowden and C. C. Sung, Phys. Rev. A19, 2392 (1979).

    ADS  Google Scholar 

  2. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  3. P. W. Milonni and P. S. Knight, Phys. Rev. A10, 1096 (1974).

    ADS  Google Scholar 

  4. G. Banfi and R. Bonifacio, Phys. Rev. A12, 2068 (1975).

    ADS  Google Scholar 

  5. L. M. Narducci and C. M. Bowden, J. Phys. A9, L75 (1976).

    ADS  Google Scholar 

  6. P. D. Drummond and H. J. Carmichael, Opt. Comm. 27, 160 (1978).

    Article  ADS  Google Scholar 

  7. H. J. Carmichael, “Analytical and Numerical Results for the Steady State in Cooperative Resonance Fluorescence,” to be published.

    Google Scholar 

  8. R. Bonifacio and L. A. Lugiato, Lett, al Nuovo Cim. 21, 505 (1978).

    Article  Google Scholar 

  9. R. Bonifacio and L. A. Lugiato, Phys. Rev. A18, 1129 (1978).

    ADS  Google Scholar 

  10. R. Gilmore, C. M. Bowden and L. M. Narducci, Phys. Rev. A12, 1019 (1975); in “Quantum Statistics and the Many-Body Problem,” edited by S. B. Trickey, W. P. Kirk, and J. W. Dufty, Plenum, New York, 1975, p. 249.

    ADS  Google Scholar 

  11. A. Abragam, “The Principles of Nuclear Magnetism,” Oxford University, London, 1961, Chapter V, XII B.

    Google Scholar 

  12. D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [Sov. Phys. Usp. 3, 320 (1960)].

    Google Scholar 

  13. H. J. Carmichael and D. F. Walls, J. Phys. B10, L685 (1977).

    ADS  Google Scholar 

  14. R. Gilmore and C. M. Bowden, Phys. Rev. A13, 1898 (1976); in “Cooperative Effects in Matter and Radiation,” edited by C. M. Bowden, D. W. Howgate and H. R. Robl, Plenum, New York, 1977, p. 335.

    Google Scholar 

  15. R. Gilmore and C. M. Bowden, J. Math Phys. (NY) 17, 1617 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  16. C. M. Bowden and C. C. Sung, J. Phys. A11, 151 (1978).

    MathSciNet  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, “Electrodynamics of Continuous Media,” Addison-Wesley, Reading, MA (1966), p. 54.

    Google Scholar 

  18. R. J. Glauber, Phys. Rev. 130, 2529 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  19. B. R. Mollow, Phys. Rev. 188, 1969 (1969).

    Article  ADS  Google Scholar 

  20. C. C. Sung and C. M. Bowden, J. Phys. A12, 2273 (1979) and references contained therein.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Bowden, C.M. (1981). Optical Bistability Based Upon Atomic Correlation in a Small Volume. In: Bowden, C.M., Ciftan, M., Robl, H.R. (eds) Optical Bistability. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3941-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3941-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3943-4

  • Online ISBN: 978-1-4684-3941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics