Skip to main content

The Driven Dicke Model and its Macroscopic Extension: Bistability or Bifurcation?

  • Chapter

Abstract

We are concerned with the relation between recent work on the “driven Dicke model” of N two-level atoms, on the same site, driven by a c. w. laser field Ω, and a corresponding theory for the more realistic macroscopically extended system. We review the results on the driven Dicke model: two different decorrelation schemes yield different results; in the steady state at resonance a semi classical approximation without damping best approximates the exact solution of the quantum model also described. The exact solution of the quantum model does not display normal optical bistability (OB):calculation of \({g^{(2)}}(O) = {G^{(2)}}(O)/\left\{ {{G^{(1)}}{{(O)}^2}} \right\}\) (where G(n)(0) = < (S+)n(S-)n > and S± are collective spin operators) shows g(2)(0)→ 1.2 and there is a simple bifurcation point at θ {∞ limΩN−1, N→∞} = 1. The inversion r3 plays the role of the order parameter: r3= ± 1/2 (l− θ2) 1/2, θ < 1; =0, θ > 1. There is a second-order type phase transition, and by moving off-resonance and relating to the decor- related model, we are able to identify one set of equivalent thermodynamic parameters for the model. We find “critical exponents” α = 1/2, β = 1/2, γ = 1.5 and α + 2β + γ > 2 in this manner. Results are compared with the operator theory for the extended system also presented (unlike the Dicke model this model does not have total spin as a constant of the motion). Decorrelation of operator products with self-correlation (radiation damping) leads of course to the c-number theory of cusp catastrophe OB. An operator theory involving a natural power dependent refractive index is sketched and we believe that it is this which should appear as the parameter in the usual treatment of the Fabry-Perot interferometer. But, alternatively, by extracting a single mode theory in the “mean-field” Approximation, we regain both the Bloch equations and the master equation of the driven Dicke model. The spectra and correlation functions shown in Figs. 1–4 are calculated from these in a decorrelation approximation which retains single-particle damping and which differs from the exact solution of the master equation. The hierarchy of different models relates to the realistic extended system model in ways very similar to those of a similar hierarchy in the theory of super fluorescence. It is concluded that mean field theory maltreats the analysis. However, it is expected that the decorrelation scheme adopted for the spectra we have calculated will be adequate to describe their essential features.

On sabbatical leave from: Ain Shams University, Faculty of Science, Applied Mathematics Department, Cairo, Egypt.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. R. Mollow, Phys. Rev. 188, 1969 (1969); Phys. Rev. A12, 1919 (1975).

    Article  ADS  Google Scholar 

  2. C. R. Stroud, Jr., and E. T. Jaynes, Phys. Rev. A1, 106 (1970).

    ADS  Google Scholar 

  3. C. R. Stroud, Jr., Phys. Rev. A3, 1044 (1971).

    ADS  Google Scholar 

  4. S. S. Hassan and R. K. Bullough, J. Phys. B8, L147 (1975).

    ADS  Google Scholar 

  5. G. S. Agarwal, Springer Tracts in Modern Physics, 70, (Springer-Verlag: Heidelberg, N.Y., 1974); M. E. Smithers and H. S. Freedhoff, J. Phys. B7, L432 (1974); S. Swain, J. Phys. B8, L437 (1975); H. J. Carmichael and D. F. Walls, J. Phys. B9, 1199 (1976); H. J. Kimble and L. Mandel, Phys. Rev. A13, 2123 (1976); C. Cohen-Tannoudji and S. Reynaud, J. Phys. B10, 345 (1977).

    Google Scholar 

  6. Proc. 3rd Conf. on Coherence and Quantum Optics, Rochester, (Plenum, N.Y., 1972), Eds: L. Mandel and E, Wolf — see articles by: R. K. Bullough, pp. 121–56; J. R. Ackerhalt, J. H. Eberly and P. L. Knight, pp. 635–44.

    Google Scholar 

  7. R. Saunders, R. K. Bullough and F. Ahmad, J. Phys. A8, 759 (1975).

    ADS  Google Scholar 

  8. J. R. Ackerhalt and J. H. Eberly, Phys. Rev. D10, 3350 (1974).

    ADS  Google Scholar 

  9. “IV Rochester Conf. on Coherence and Quantum Optics,” (Plenum, N. Y., 1977 ), Eds: L. Mandel and E. Wolf.

    Google Scholar 

  10. F. Schuda, C. R. Stroud, Jr. and M. Hercher, J. Phys. B7, L198 (1974); also, W. Hartig, W. Rasmurren, R. Schieder and H. Walther, Z. Physik A278, 205 (1976); F. Y. Wu, R. E. Grove and S. Ezekiel, Phys. Rev. Lett. 35, 1426 (1975).

    ADS  Google Scholar 

  11. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  MATH  Google Scholar 

  12. a) R. Bonifacio, P. Schwendimann and F. Haake, Phys. Rev. A4, 302, 854 (1971); (b) F. Haake and R. Glauber, Phys. Rev. A5, 1457 (1972); 13, 357 (1976); 20, 2047 (1979); “Cooperative Phenomena” (North-Holland, Amsterdam, 1974), Ed. H. Haken, p. 71; M. F. Schuurmans, D. Polder and Q. Vrehen, Phys. Rev. A19, 1192 (1979); (c) G. Banfi and R. Bonifacio, Phys. Rev. Lett. 33, 1259 (1974); Phys. Rev. A12, 2068 (1975); (d) R. Bonifacio and L. Lugiato, Phys. Rev. A11, 1507 (1975); 12, 587 (1975); (e) R. Saunders, S. S. Hassan and R. K. Bullough, J. Phys. A9, 1725 (1976); R. K. Bullough Et al., in Ref. 9, p. 263; J. MacGillivray and M. S. Feld, Phys. Rev. A14, 1169 (1976); (f) “Cooperative effects in matter and radiation,” (Plenum, N. Y., 1977 ), Eds. C. M. Bowden, D. W. Howgate and H. R. Robl — see especially articles by: J. MacGillivray and M. S. Feld, pp. 1–14; R. Bonifacio Et al., pp. 193–208; R. Saunders and R. K. Bullough, pp. 209–256.

    ADS  Google Scholar 

  13. a) N. Skribanowitz, I. P. Herman, J. C. MacGillivray and M.S. Feld, Phys. Rev. Lett. 30, 309 (1973); (b) M. Gross, C. Fabre, P. Pillet and S. Haroche, Phys. Rev. Lett. 36, 1035 (1976); H. M. Gibbs, in Ref. 12f, pp. 61-78; Q.H.F. Vrehen, in Ref. 12f, pp. 79–100.

    Article  ADS  Google Scholar 

  14. G. S. Agarwal, A. C. Brown, L. M. Narducci and G. Vetri, Phys. Rev. A15, 1613 (1977); G. S. Agarwal, D. H. Feng, L. M. Narducci, R. Gilmore and R. A. Tuft, Phys. Rev. A20, 2040 (1979); G. S. Agarwal, R. Saxena, L. M. Narducci, D. H. Feng and R. Gilmore, Phys. Rev. A21, 257 (1980).

    ADS  Google Scholar 

  15. A. S. Amin and J. G. Cordes, Phys. Rev. A18, 1298 (1978); C. Mavroyannis, Phys. Rev. A18, 185 (1978); Opt. Comm. 33, 42 (1980); H. J. Carmichael, Phys. Rev. Lett. 43, 1106 (1979).

    ADS  Google Scholar 

  16. H. J. Carmichael and D. F. Walls, J. Phys. B10, L685 (1977).

    ADS  Google Scholar 

  17. S. S. Hassan and D. F. Walls, J. Phys. A11, L87 (1978).

    ADS  Google Scholar 

  18. C. M. Bowden and C. C. Sung, Phys. Rev. A19, 2392 (1979); also C. M. Bowden in this volume.

    ADS  Google Scholar 

  19. I. R. Senitzky, Phys. Rev. Lett. 40, 1334 (1978); Phys. Rev. A6, 1171, 1175 (1972).

    Article  ADS  Google Scholar 

  20. P. D. Drummond and S. S. Hassan, Phys. Rev. A22, 662, (1980).

    ADS  Google Scholar 

  21. L. M. Narducci, D. H. Feng, R. Gilmore and G. S. Agarwal, Phys. Rev. A18, 1571 (1978).

    ADS  Google Scholar 

  22. P. D. Drummond and H. J. Carmichael, Opt. Comm. 27, 160 (1978); D. F. Walls, P. D. Drummond, S. S. Hassan and H. J. Carmichael, Prog. Theoret. Phys. Suppl. 64, 307 (1978).

    Article  ADS  Google Scholar 

  23. R. R. Puri and S. V. Lawande, Phys. Lett. 72A, 200 (1979); Physica A 101, 599 (1980).

    MathSciNet  ADS  Google Scholar 

  24. S. S. Hassan, R. K. Bullough, R. R. Puri and S. V. Lawande, Physica A (in press); P. D. Drummond also obtained the value g(2)(0) = 1.2 using the solution in Ref. 23 (preprint).

    Google Scholar 

  25. R. R. Puri, S. V. Lawande and S. S. Hassan, Opt. Comm. (to appear).

    Google Scholar 

  26. S. Ja. Kilin, J. Applied Spect. (USSR) 28, 255 (1978).

    Google Scholar 

  27. S. S. Hassan Et al., (in preparation).

    Google Scholar 

  28. R. Bonifacio and L. Lugiato, Opt. Comm. 19, 172 (1976); Phys. Rev. A18, 1129 (1978).

    Article  ADS  Google Scholar 

  29. G. S. Agarwal, L. M. Narducci, D. H. Feng and R. Gilmore in Ref. 9, pp. 281–292; Phys. Rev. A18, 620 (1978). Notice that “mean field” arises in two distinct contexts in this paper: one is the “mean field” theory of Ref. 28 in which all atomic operator densities are averaged on the space variable (in the context of §III operate with V−1 ∫ dx) with the prescription that an operator or c-number product is replaced by the product of averages (on A(x) B(x) form V −2 ∫ dx dx’ A(x) B(x’)). The other usage arises in the theory of phase transitions and is essentially a decorrelation approximation of Hartree type. It is the first usage which is referred to in the discussion of the work of Ref, 18 (§11.C); but it is the second one which is referred to at the beginning of §II.E. We shall use double quotes to indicate the first usage throughout the paper.

    Google Scholar 

  30. S. S. Hassan, P. D. Drummond and D. F, Walls, Opt. Comm. 27, 480 (1978); R. Bonifacio and L. Lugiato, Lett. Nuovo. Cim. 21, 517 (1978).

    Article  ADS  Google Scholar 

  31. H. M. Gibbs, S. L. McCall and T. N. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976); also see S. L. McCall, Phys. Rev. A9, 1515 (1974).

    Article  ADS  Google Scholar 

  32. B. R. Mollow, Phys. Rev. A5, 2217 (1972); F. Y. Wu, S. Ezekiel, M. Ducloy and B. R. Mollow, Phys. Rev. Lett. 38, 1077 (1977).

    ADS  Google Scholar 

  33. D. A. Miller and S. D. Smith, Opt, Comm. 31, 101 (1979).

    Article  ADS  Google Scholar 

  34. G. S. Agarwal, L. M.. Narducci, D. H. Feng and R. Gilmore, Phys. Rev. Lett. 42, 1260 (1979); 43, 238 (1979).

    Article  ADS  Google Scholar 

  35. V. Degiorgio, Physics Today, 29, (October, 1976); N. Corti and V. Degiorgio, Phys. Rev. Lett. 36, 1173 (1976).

    Google Scholar 

  36. S. S. Hassan, Ph.D. Thesis (U. of Manchester, 1976 ); R. Saunders, Ph.D. Thesis (U. of Manchester, 1973 ).

    Google Scholar 

  37. R. K. Bullough, J. Phys. A1, 409 (1968); 2, 477 (1969); 3, 708, 726, 751 (1970); R. K. Bullough, A. S. F. Obada, B. V. Thompson and F. Hynne, Chem. Phys. Lett. 2, 293 (1968); R. K. Bullough and F. Hynne, Chem. Phys. Lett. 2, 307 (1968); F. Hynne and R. K. Bullough, J. Phys. A5, 1272 (1972); and “The Scattering of Light ” (to be published, 1980 ).

    Google Scholar 

  38. S. S. Hassan and R. K. Bullough (to be published); also see Phil. Trans. Roy. Soc. London A293, 232 (1979).

    Google Scholar 

  39. E. Abraham, R. K. Bullough and S. S. Hassan, Opt. Comm. 28, 109 (1979); 33, 93 (1980); E. Abraham and S. S. Hassan, Opt. Comm. (to appear); P. Meystre, Opt. Comm. 26, 277 (1978); R. Bonifacio and L. Lugiato, Lett. Nuovo Cim. 21, 505 (1978); J. A. Herman, Opt. Acta 27, 159 (1980).

    Article  ADS  Google Scholar 

  40. R. Saunders and R. K. Bullough, J. Phys. A6, 1348 (1973).

    ADS  Google Scholar 

  41. M. Lax, Phys. Rev. 157, 213 (1967).

    Article  MathSciNet  ADS  Google Scholar 

  42. G. S. Agarwal, L. M. Narducci, R. Gilmore and D. H. Feng, Phys. Rev. A18, 620 (1978); 20, 545 (1979); L. A. Lugiato, Nuovo Cim. B50, 89 (1978), and references therein; G. S. Agarwal and S. P. Tewari, Phys. Rev. A21, 1638 (1980); S. P. Tewari, Opt. Comm. 34, 273 (1980).

    ADS  Google Scholar 

  43. H. M. Gibbs, Q. H. F. Vrehen and H. M. Hikspoors, Phys. Rev. Lett. 39, 547 (1977); and in Ref. 12f.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Hassan, S.S., Bullough, R.K. (1981). The Driven Dicke Model and its Macroscopic Extension: Bistability or Bifurcation?. In: Bowden, C.M., Ciftan, M., Robl, H.R. (eds) Optical Bistability. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3941-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3941-0_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3943-4

  • Online ISBN: 978-1-4684-3941-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics