Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 66))

  • 152 Accesses

Abstract

Experimental high-energy physics is based on the ability of the experimenter to detect particles produced in strong, electro magnetic and weak interactions. Detector systems of huge dimensions and very high complexity can be built presently because on-line computers and fast data processing enable permanent control of such big systems. But still the basic principles of detectors are simple and have not changed during the past five years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.W.Fabjan and H.G.Fischer, CERN preprint EP/80–27(1980), to be published in Reports on Progress in Physics

    Google Scholar 

  2. H.A.Bethe, Hdb. Physik 24(1933)518; R.M.Sternheimer and R.F. Peierls, Phys.Rev. B 3 (1971)3081

    Google Scholar 

  3. I.Lehraus et al., Nucl.Instr.Methods 153(1978)347

    Article  Google Scholar 

  4. L.D.Landau, J.Exp.Phys. (USSR) 8(1944)201

    Google Scholar 

  5. G.Charpak, Ann.Rev.Nucl.Sci. 20(1970)195

    Article  Google Scholar 

  6. G.Charpak et al., Nucl.Instr.Methods 62(1968)235; ibid. 80(1970)13

    Article  Google Scholar 

  7. L.B.Loeb, Basic Processes of Gaseous Electronics, U.Calif. Press, Berkeley 1961

    Google Scholar 

  8. H.G.Fischer et al., Proc.Int.Meeting on Prop. and Drift Chambers, Dubua 1975, (JINR) report D 13–9164

    Google Scholar 

  9. P.Schilly et al., Nucl.Instr.Methods 91(1971)221

    Article  Google Scholar 

  10. W.Cunitz et al., Nucl.Instr.Methods 91(1971)211

    Article  Google Scholar 

  11. T.Trippe, CERN NP Int.Report 69–18(1969)

    Google Scholar 

  12. K.Kleinknecht et al., CERN NP Int.Report 70–18(1970)

    Google Scholar 

  13. V.Radeky, IEEE Trans.Nucl.Sci. NS-21(1974)51

    Article  Google Scholar 

  14. G.Charpak et al., Nucl.Instr.Methods 148(1978)471

    Article  Google Scholar 

  15. G.Charpak et al., Nucl.Instr.Methods 80(1970)13

    Article  Google Scholar 

  16. A.H.Walenta et al., Nucl.Instr.Methods 92(1971)373

    Article  Google Scholar 

  17. A.Breskin et al., Nucl.Instr.Methods 119(1974)9

    Article  Google Scholar 

  18. G.Marel et al., Nucl.Instr.Methods 141(1977)43 M.Holder et al., Nucl.Instr.Methods 148(1978)235

    Article  Google Scholar 

  19. D.R.Nygren, LBL Int.Report, Feb.1974; J.N.Marx and D.R.Nygren, Physics today, Oct.1978, p.46.

    Google Scholar 

  20. WA 21-Collaboration using BEBC at CERN, Exp. WA 21 (1979)

    Google Scholar 

  21. L.Montanet, paper given at xxth Int.Conf. on High En.Physics, Madison, Wisconsin, July 1980

    Google Scholar 

  22. L.S.Schröder, Nucl.Instr.Methods 162(1979)395

    Google Scholar 

  23. P.Rice-Evans, Spark, Streamer, Proportional and Drift Chambers, London 1974

    Google Scholar 

  24. V.Eckhardt, MPI München, private communication

    Google Scholar 

  25. M.Dine et al., Fermilab proposal No.490

    Google Scholar 

  26. J.Sandweiss, paper given at XXth Int.Conf. on High En.Physics, Madison, Wisconsin, July 1980

    Google Scholar 

  27. M.Conversi and A.Gozzini, Nuovo Cim.2(1955)189; M.Conversi and L.Federici, Nucl.Instr.Methods 151(1978)93

    Article  Google Scholar 

  28. F.E.Taylor et al., IEEE Tran.Nucl.Sci. NS 25(1978)312

    Article  Google Scholar 

  29. Valvo Photomultiplier Book, Hamburg, April 1970

    Google Scholar 

  30. J.B.Birks, Theory and practice of scintillation counting, London 1964

    Google Scholar 

  31. I.B.Berlman, Fluorescence Spectra of Aromatic Molecules, N.Y. and London 1971

    Google Scholar 

  32. F.Klawonn, Untersuchungen zur Optimierung der Szintillations-zähler für den Einsatz in einem Hadronkalorimeter, Universität Dortmund, Januar 1980

    Google Scholar 

  33. R.C.Garwin, Rev.Sci.Instr. 31(1960)1010

    Article  Google Scholar 

  34. B.Barish et al., Very large area scintillation counters for hadron calorimetry, IEEE Trans.Nucl.Sci. NS.25(1978)532

    Article  Google Scholar 

  35. H.P.Klasen, Diplomarbeit Universität Dortmund 1978

    Google Scholar 

  36. P.A.Cerenkov, I.M.Frank and I.E.Tamm, Nobel Lectures in Physics, New York, Elsevier 1964

    Google Scholar 

  37. M.Cantin et al., Nucl.Instr.Methods 118(1974)177

    Article  Google Scholar 

  38. J.Litt and R.Meunier, Ann.Rev.Nucl.Sci. 23 (1973)J

    Article  Google Scholar 

  39. V.L.Ginzburg and I.M.Frank, IETP 16(1946)15

    Google Scholar 

  40. X.Artru et al., Phys.Rev. D 12(1975)1289; C.W.Fabjan and W.Struczinski, Phys.Lett. 57 B(1975)484

    Article  Google Scholar 

  41. G.M.Garibian, Proc.5th Int.Conf, in Instrumentation for High En.Physi, Frascati 1973, p.329

    Google Scholar 

  42. J.Cobb et al., Nucl.Instr.Methods 140(1977)413

    Article  Google Scholar 

  43. M.Deutschmann et al., Particle identification using the angular distribution of transition radiation, Preprint CERN EP/80–155, Aug.1980

    Google Scholar 

  44. Particle Data Group, Phys.Lett. 75 B(1978)1

    Article  Google Scholar 

  45. G.Bathow et al., Nucl.Phys. B 20(1970)592

    Article  Google Scholar 

  46. M.Holder et al., Nucl.Instr.Methods 151(1978)69

    Article  Google Scholar 

  47. C.W.Fabjan et al., Nucl.Instr.Methods 141(1977)61

    Article  Google Scholar 

  48. P.Dishaw, Limits on neutrino-like particles, thesis Stanford University, 1979

    Google Scholar 

  49. CERN-Dortmund-Heidelberg-Saclay-Collaboration (to be published); J.Rothberg and J.Wotschak, private communication

    Google Scholar 

  50. G.Grayer, J.Homer (Rutherford Laboratory), private communication

    Google Scholar 

  51. F.Eisele, K.Kleinknecht, D.Pollmann and B.Renk, Dortmund University

    Google Scholar 

  52. NA 5 Bari-Cracow-Liverpool-München(MPI)-Nijmegen -Collaboration, CERN Proposal SPSC/75–1/P37

    Google Scholar 

  53. V.Eckhardt et al., Nucl.Instr.Methods 143(1977)235

    Article  Google Scholar 

  54. UA 1 Aachen-Annecy-Birmingham-CERN-London-Paris-Riverside-Rutherford-Saclay-Vienna -Collaborarion, CERN Proposal SPSC/78–6, SPSC/P92

    Google Scholar 

  55. E.Lorenz, private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Kleinknecht, K. (1981). Particle Detectors. In: Ferbel, T. (eds) Techniques and Concepts of High-Energy Physics. NATO Advanced Study Institutes Series, vol 66. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3938-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3938-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3940-3

  • Online ISBN: 978-1-4684-3938-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics