Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 65))

  • 601 Accesses

Abstract

The primary motivation for high frequency phonon propagation research is its application to a variety of transport problems at thermal frequencies. The strong dependence of anharmonic phonon decay processes, of defect- and electron-phonon scattering and acoustic dispersion on phonon frequency makes it particularly interesting to study high frequency phonon transport in solids. These effects become particularly dominant at frequencies of the order of 1012 Hz. During the last decade there has been a great deal of activity in this area. This has been due to the development of thin film generators and detectors such as superconducting tunneling junctions and bolometers. The use of such devices for phonon detection has been reviewed by von Gutfeld (1968) and Eisenmenger (1976, 1980a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bagaev, V. S., Keldysh, L. V., Sibeldin, N. N. and Tsvetkov, V. A., 1976, Phonon wind propulsion of excitons and electron-hole droplets, Sov. Phys. JETP 43, 362.

    ADS  Google Scholar 

  • Born, M. and Wolfe, E., 1964, In Principles of Optics (Pergamon, New York).

    Google Scholar 

  • Carruthers, P. A., 1961, Theory of thermal conductivity of solids at low temperatures, Rev. Mod. Phys, 33, 92.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Challis, L. J., Ramdane, A., 1980, Phonon scattering by chromium ions in GaAs, Proceedings of Int’l. Conf. on Phonon Scattering in Condensed Matter (H. J. Maris, Ed., Plenum Press, New York).

    Google Scholar 

  • Chaudhuri, N., Wadhwa, R. S., Tiku, P., Sreedhar, A. K., 1973, Thermal conductivity of GaAs at low temperatures, Phys. Rev. 8, 4668.

    Article  ADS  Google Scholar 

  • Dolling, G. and Waugh, J. T., 1964, Normal vibrations in gallium arsenide, In Proceedings of the Int’l. Conf. on Lattice Dynamics, Copenhagen, Denmark (Pergamon Press, Oxford).

    Google Scholar 

  • Dynes, R. C., Narayanamurti, V., Chin, M. A., 1971, Monochromatic phonon propagation in Ge:Sb using superconducting tunnel junctions, Phys. Rev. Lett. 4, 181.

    Article  ADS  Google Scholar 

  • Dynes, R. C., Narayanamurti, V., 1972, Phonon fluorescence in superconductors and the propagation characteristics of high frequency phonons in Ge:Sb and Al2O3:V3+, Phys. Rev. B6, 5143.

    Google Scholar 

  • Eisenmenger, W., 1976, Tunneling junctions as phonon generators, in Physical Acoustics (W. P. Mason, Ed.), Vol. XII, p. 79 (Academic Press, New York).

    Google Scholar 

  • Eisenmenger, W., 1980a, Nonequilibrium phonons, Chapter III, this volume.

    Google Scholar 

  • Eisenmenger, W., 1980b, Phonon detection by the fountain pressure in superfluid 4helium films, Proceedings of Int’l. Conf. on Phonon Scattering in Condensed Matter (H. J. Maris, Ed., Plenum Press, New York).

    Google Scholar 

  • Forkel, W., Weite, M., Eisenmenger, W., 1973, Evidence for 870-GHz phonon emission from superconducting Al tunnel diodes through resonant scattering by oxygen in silicon, Phys, Rev. Lett. 31, 215.

    Article  ADS  Google Scholar 

  • Geballe, T. H., Hull, G. W., 1958, Isotopic and other types of thermal resistance in germanium, Phys. Rev. 110, 773.

    Article  ADS  Google Scholar 

  • Gossard, A. C., 1979, GaAs/AlAs layered films, Thin Solid Films 57, 3.

    Article  ADS  Google Scholar 

  • Greenstein, M. and Wolfe, J. P., 1978, Anisotropy in the shape of the electron-hole-droplet cloud in germanium, Phys. Rev, Lett. 41, 715.

    Article  ADS  Google Scholar 

  • Griffin, A. and Carruthers, P., 1963, Thermal conductivity of solids IV: resonance fluorescence scattering of phonons by donor electrons in germanium, Phys. Rev. 131, 1976.

    Article  ADS  MATH  Google Scholar 

  • Henry, C. H. and Lang, D. V., 1977, Nonradiative capture and recombination by multiphonon emission in GaAs and GaP, Phys. Rev. B15, 989.

    ADS  Google Scholar 

  • Hensel, J. C., Dynes, R. C., 1979, Observation of singular behavior in the focussing of ballistic phonons in Ge, Phys. Rev. Lett. 43, 1033.

    Article  ADS  Google Scholar 

  • Hensel, J. C., Dynes, R. C., 1977, Interaction of electron-hole drops with ballistic phonons in heat pulses: the phonon wind, Phys. Rev. Lett. 39, 969.

    Article  ADS  Google Scholar 

  • Holland, M. G., 1964, Phonon scattering in semiconductors from thermal conductivity studies, Phys. Rev. 134, A471.

    Article  ADS  Google Scholar 

  • Huet, D. and Maneval, J. P., 1974, Image of the fermi surface and screening effects in phonon attenuation, Phys. Rev. Lett. 33, 1154.

    Article  ADS  Google Scholar 

  • Keldysh, L. V., 1976, Thermal conductivity and lattice vibrational modes, JETP Lett. 23, 86.

    ADS  Google Scholar 

  • Klemens, P. G., 1958, Thermal conductivity and lattice vibrational modes, Solid State Physics 7, 1.

    Article  Google Scholar 

  • Lighthill, M. J., 1960, Studies on magneto-hydrodynamic waves and other anisotropic wave motions, Phil. Trans. Roy. Soc. A252, 397.

    MathSciNet  ADS  Google Scholar 

  • Lang, D. V., Logan, R. A. and Jaros, M., 1979, Trapping characteristics and a donor-complex (DX) model for the persistent-photoconductivity trapping center in Te-doped AlxGa1-xAs, Phys. Rev. B19, 1015.

    ADS  Google Scholar 

  • Lax, M., Nelson, D. F., 1975, Radiance theorem and optical invariants in anisotropic media, J. Opt. Soc. Am. 65, 668.

    Article  ADS  Google Scholar 

  • Lax, M., Nelson, D. F., 1976, Imaging through a surface of an anisotropic medium with application to light scattering, J. Opt. Soc. Am. 66, 694.

    Article  ADS  Google Scholar 

  • Lax, M., Narayanamurti, V., 1980, Phonon magnification and the gaussian curvature of the slowness surface in anisotropic media: detector shape effects with application to GaAs, (in press).

    Google Scholar 

  • Maris, H. J., 1971, Enhancement of heat pulses in crystals due to elastic anisotropy, J. Acoust. Soc. Am. 50, 812.

    Article  ADS  Google Scholar 

  • Maneval, J. P., Zylberstejn, A., and Huet, D., 1971, Direct observation of electron-phonon interaction, Phys. Rev. Lett. 27, 1375.

    Article  ADS  Google Scholar 

  • Musgrave, M. J. P., 1954, On the propagation of elastic waves in aelotropic media. I. General Principles, Proc. Roy. Soc. A226, 337.

    ADS  Google Scholar 

  • Narayanamurti, V., Chin, M. A., and Logan, R. A., 1978a, Direct determination of symmetry of Cr ions in semi-insulating GaAs substrates through anisotropic ballistic phonon propagation and attenuation, Appl. Phys. Lett. 33, 481.

    Article  ADS  Google Scholar 

  • Narayanamurti, V., Logan, R. A., and Chin, M. A., 1978b, Direct observation of phonons generated during nonradiative capture in GaAs p-n junctions, Phys. Rev. Lett. 40, 63.

    Article  ADS  Google Scholar 

  • Narayanamurti, V., Logan, R. A., Chin, M. A., and Lax, M., 1978c, Anisotropic phonon generation in GaAs epilayers and pn junctions, Sol. St. El. 21, 1295.

    Article  Google Scholar 

  • Narayanamurti, V., Logan, R. A., and Chin, M. A., 1979a, Symmetry of donor-related centers responsible for persistent photoconductivity in AlxGa1-xAs, Phys. Rev. Lett. 43, 1536.

    Article  ADS  Google Scholar 

  • Narayanamurti, V., Störmer, H. L., Chin, M. A., Gossard, A. C., and Wiegmann, W., 1979b, Selective transmission of high-frequency phonons by a superlattice: the “dielectric” phonon filter, Phys. Rev, Lett. 43, 2012.

    Article  ADS  Google Scholar 

  • Northrup, G. A., Wolfe, J. P., 1979, Ballistic phonon imaging in solids — a new look at phonon focusing, Phys. Rev, Lett. 43, 1424.

    Article  ADS  Google Scholar 

  • Orbach, R., 1966, Nonlinear phonon generation, Phys. Rev. Lett. 16, 15.

    Article  ADS  Google Scholar 

  • Pomerantz, M. and von Gutfeld, R. J., 1968, Heat pulse studies of phonon scattering by impurities in Si and Ge, Proceedings of the Int’l. Conf. on the Physics of Semiconductors, Moscow, (Nanka Publishing House, Leningrad, U.S.S.R.) 2, 690.

    Google Scholar 

  • Taborek, P. and Goodstein, D., 1980, Diffuse reflection of phonons and the anomalous Kapitza resistance, Phys. Rev. (in press).

    Google Scholar 

  • Taylor, B., Maris, H. J., Elbaum, C., 1969, Phonon focusing in solids, Phys. Rev. Lett. 23, 416.

    Article  ADS  Google Scholar 

  • Ulbrich, R. G., 1978, Optical studies of hot electrons, Proceedings of 14th Int’l. Conf. on Physics of Semiconductors, Edinburgh, Inst. Phys. Conf. Ser. No. 43, 11.

    Google Scholar 

  • Ulbrich, R. G., Narayanamurti, V. and Chin, M. A., 1980, Propagation of large wave vector phonons in semiconductors, Proceedings of 15th Int’l. Semiconductor Physics Conf., Kyoto, Japan and Phys. Rev. Lett. (submitted).

    Google Scholar 

  • von Gutfeld, R. J., 1968, Heat pulse transmission, in Physical Acoustics (W. P. Mason, Ed.), Vol. V, p. 233 (Academic Press, New York).

    Google Scholar 

  • Ziman, J. M., 1962, in Electrons and Phonons (Clarendon, Oxford, England).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Narayanamurti, V. (1981). Phonon Optics in Semiconductors. In: Gray, K.E. (eds) Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries. NATO Advanced Study Institutes Series, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3935-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3935-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3937-3

  • Online ISBN: 978-1-4684-3935-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics