Skip to main content

Thermoelectric Effects in Superconductors

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 65))

Abstract

The first measurements of thermoelectricity in superconductors were made by Meissner (1927) who found the Seebeck coefficient S (thermopower) in a superconducting thermocouple to be at least an order of magnitude below the equivalent normal state value. This result was subsequently verified by Borelius et al., (1931); Burton et al., (1935); Keesom and Matthijs (1938); and Casimir and Rade-maker s (1947). In 1953, Pullan showed unequivocally that the thermopower of a super-conductor decreased at Tc by at least four decades.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aronov, A. G., 1975, The influence of condensate motion on the thermo-electric effects in superconductors, Sov. Phys.-JETP, 40:90.

    ADS  Google Scholar 

  • Bok, J., and Klein, J., 1968, “Electric fields” in superconductors, Phys. Rev. Letters, 20:660.

    Article  ADS  Google Scholar 

  • Borelius, G., Keesom, W. H., Johansson, C. H., and Linde, J. O., 1931, Measurements of thermo-electric forces of lead and tin down to the temperature of liquid helium, Proc. Koninhl. Ned. Akad. Wetenschap, 34:1365.

    Google Scholar 

  • Burton, E. F., Tarr, F.G.A., and Wilhelm, J. O., 1935, Nature, 136:141.

    Article  ADS  Google Scholar 

  • Casimir, H.B.G., and Rademakers, A., 1947, The thermo-electric behaviour of a superconductor in the neighborhood of the transition point, Physica, 13:33.

    Article  ADS  Google Scholar 

  • Clarke, J., and Freake, S. M., 1972, Superconducting fountain effect, Phys. Rev. Letters, 29:588.

    Article  ADS  Google Scholar 

  • Clarke, J., Fjordbøge, B. R., and Lindelof, P. E., 1979, Supercurrent induced charge imbalance measured in a superconductor in the presence of a thermal gradient, Phys. Rev. Letters, 43:642.

    Article  ADS  Google Scholar 

  • Clarke, J., and Tinkham, M., 1980, Theory of quasiparticle charge imbalance induced in a superconductor by a supercurrent in the presence of a thermal gradient, Phys. Rev. Letters, 44:106.

    Article  ADS  Google Scholar 

  • Daunt, J. G., and Mendelssohn, K., 1945, An experiment on the mechanism of superconductivity, Proc. Roy. Soc. A, 185:225.de Waele, A.Th.A.M., de Bruyn Ouboter, R., and Pipes, P. B., 1973, Thermo-electrostatic effects in superconductors, Physica, 65:587.

    ADS  Google Scholar 

  • de Waele, A.Th.A.M., de Bruyn Ouboter, R., and Pipes, P. B., 1973, Thermo-electrostatic effects in superconductors, Physica, 65:587.

    Article  Google Scholar 

  • Entin-Wohlman, O., and Orbach, R., 1980, Generation of charge imbalance in a superconductor by a temperature gradient, Phys. Rev., to be published.

    Google Scholar 

  • Falco, C. M., 1976, Acoustically generated magnetic flux in a bi-metallic superconducting loop, Phys. Rev., B14:3853.

    ADS  Google Scholar 

  • Falco, C. M., 1976, Thermally induced magnetic flux in a superconducting ring, Solid State Commun., 19:623.

    Article  ADS  Google Scholar 

  • Falco, C. M., 1977, Observation of thermally induced potential in a superconductor, Phys. Rev. Letters, 39:660.

    Article  ADS  Google Scholar 

  • Gal’perin, Yu. M., Gurevich, V. L., and Kozub, V. I., 1974, Thermoelectric effects in superconductors, Sov. Phys.-JETP, 39:680.

    ADS  Google Scholar 

  • Gal’perin, Yu. M., Gurevich, V. L., and Kozub, V. I., 1974, Nonlinear acoustic effects in superconductors, Sov. Phys.-JETP, 38:517.

    ADS  Google Scholar 

  • Gal’perin, Yu. M., Gurevich, V. L., and Kozub, V. I., 1974, Acousto-electric effect in superconductors, Sov. Phys. Solid State, 16:783.

    Google Scholar 

  • Gal’perin, Yu. M., Gurevich, V. L., and Kozub, V. I., 1976, Non-stationary acoustoelectric effects in propagation of transverse sound in superconductors, Sov. Phys.-JETP, 42:296.

    Google Scholar 

  • Garland, J. C. and Van Harlingen, D. J., 1974, Thermoelectric generation of flux in a bimetallic superconducting ring, Phys. Letters, 47A:423.

    ADS  Google Scholar 

  • Ginzburg, V. L., 1944, On the thermoelectric phenomena in superconductors, J. Phys. USSR, 8:148.

    Google Scholar 

  • Heidel, D. F. and Garland, J. C., 1978, Thermoelectric branch imbalance currents in superconductors, J. de Phys. 39:C6–492.

    Google Scholar 

  • Heidel, D. F., and Garland, J. C., 1980, to be published.

    Google Scholar 

  • Keesom, W. H. and Matthijs, C. J., 1938, Physica, 5:437.

    Article  ADS  Google Scholar 

  • Khalatnikov, I. M., 1965, “An introduction to the theory of superfluidity,” W. A. Benjamin, New York.

    Google Scholar 

  • Lindelof, P. E., Fjordbøge, B. R., and Hansen, J. B., 1979, A thermally induced charge imbalance and other non-equilibrium effects in a superconductor with a moving condensate, preprint.

    Google Scholar 

  • Matsinger, A. A. J., de Bruyn Ouboter, R., and van Beelen, H., 1978, On the possible existence of a thermopower in the superconducting state, Physica, 93B:63.

    Google Scholar 

  • Morris, T. D. and Brown, J. P., 1971, The temperature dependence of the Bernoulli effect in a type-I superconductor, Physica, 55:760.

    Article  ADS  Google Scholar 

  • Pegrum, C. M., Guenault, A. M., and Pickett, G. R., An experimental investigation of the thermoelectric generation of flux in a superconducting bimetallic loop, in: “Low Temperature Physics-LT14,” M. Krusius and M. Vuorio, eds., North Holland, Amsterdam (1975).

    Google Scholar 

  • Pegrum, C. M. and Guénault, A. M., 1976, Thermoelectric flux effects in superconducting bimetallic loops, Phys. Letters, 59A:393.

    ADS  Google Scholar 

  • Pethick, C. J. and Smith, H., 1978, Relaxation and collective motion in superconductors, a two-fluid description, J. de Phys. 39:C6–488.

    Google Scholar 

  • Pethick, C. J. and Smith, H., 1979, Generation of charge imbalance by a temperature gradient, Phys. Rev. Letters, 43:640.

    Article  ADS  Google Scholar 

  • Pipes, P. B. and Darling, D. H., Temperature dependence of contact potential in superconducting niobium, in: “Low Temperature Physics-LT14,” M. Krusius and M. Vuorio, eds., North Holland, Amsterdam (1975).

    Google Scholar 

  • Pullan, G. T., 1953, The thermo-electric behaviour of tin and silver at liquid-helium temperatures. Proc. Roy. Soc. A, 217:280.

    Article  ADS  Google Scholar 

  • Putterman, S. and de Bruyn Ouboter, R., 1970, Are there thermoelectric effects in superconductors?, Phys. Rev. Letters, 24:50.

    Article  ADS  Google Scholar 

  • Putterman, S. J., 1974, “Superfluid Hydrodynamics,” North Holland, Amsterdam.

    Google Scholar 

  • Schmid, A. and Schön, G., 1979, Generation of branch imbalance by the interaction between supercurrent and thermal gradient, Phys. Rev. Letters, 43:793.

    Article  ADS  Google Scholar 

  • Schuller, I. K. and Falco, C. M., 1979, Optically induced non-equilibrium and heating effects in superconductors, Sov. J. Low Temp. Physics, 4:446.

    Google Scholar 

  • Selzer, P. M. and Fairbank, W. M., 1974, Thermally generated magnetic fields in an anisotropic metallic crystal at low temperatures, Phys. Letters, 48A:279.

    ADS  Google Scholar 

  • Shott, M. and Walton, A. J., 1977, Changes in the chemical potential of tin on becoming superconducting, Phys. Letters, 60A:53.

    ADS  Google Scholar 

  • Smith, A. D., Tinkham, M., and Skocpol, W. J., 1980, A new thermoelectric effect in tunnel junctions, preprint.

    Google Scholar 

  • Steiner, V. K., and Grassmann, P., 1935, Eine obere grenze der thermokraft zwischen Supraleitern, Phys. Z., 36:527.

    Google Scholar 

  • Tinkham, M., 1972, Tunneling generation, relaxation, and tunneling detection of hole-electron imbalance in superconductors, Phys. Rev., B6:1747.

    ADS  Google Scholar 

  • Van Harlingen, D. J., Heidel, D. F., and Garland, J. C., 1980, Experimental study of thermoelectricity in superconducting indium, Phys. Rev., B21:1842.

    ADS  Google Scholar 

  • Welker, N. K., and Bedard, F. D., Anomalous thermoelectric effects in point contact tunnel junctions, in: “SQUID Superconducting Quantum Interference Devices and their Applications,” H. D. Hahlbohm and H. Lübbig, eds., Walter de Gruyter, Berlin (1977).

    Google Scholar 

  • Zavaritskii, N. V., 1974, Observation of superconducting current excited in a superconductor by heat flow, JETP Letters, 19:126.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Falco, C.M., Garland, J.C. (1981). Thermoelectric Effects in Superconductors. In: Gray, K.E. (eds) Nonequilibrium Superconductivity, Phonons, and Kapitza Boundaries. NATO Advanced Study Institutes Series, vol 65. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3935-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3935-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3937-3

  • Online ISBN: 978-1-4684-3935-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics