Skip to main content

Languages for Parallel Processing of Images

  • Chapter

Abstract

Parallel processing of large data arrays is characteristic of image analysis. In order to be compatible with typical television systems, the usual image size is 512×512. If the image is a 3-color image, this means that approximately 1 million bytes of data are present in the single-frame output of an ordinary television scanner. If the television scanner operates at 15 frames per second, then the full data transfer rate is more than 10 megabytes per second, i.e., one picture element (pixel) is generated every 100 nanoseconds. In order that a computing system process images at this rate, several picture points operations (pixops) must be performed in this time interval.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akin, O., and Reddy, R., “Knowledge Acquisition for Image Understanding Research,” Comput. Graph. Image Proc. 6:307–334 (1977).

    Article  Google Scholar 

  • Alexander, I., Brunei University (personal communication).

    Google Scholar 

  • Asada, H., Tabata, M., Kidode, M., and Watanabe, S., “New Image Processing Hardwares and Their Applications to Industrial Automation,” in Imaging Applications for Automated Industrial Inspection and Assembly, Vol. 182, Soc. Photo-Opt. Instr. Engrs. (1979), pp. 14–21.

    Google Scholar 

  • Balston, J., Plessey Electronic Systems Research (personal communication).

    Google Scholar 

  • Basille, J. L. (verbal presentation), CNR Workshop on New Computer Architectures for Image Processing, Ischia (June 1980).

    Google Scholar 

  • Batchelor, B. G., University of Southampton (personal communication).

    Google Scholar 

  • Castleman, K. R., Digital Image Processing, Englewood Cliffs, Prentice Hall (1979), pp. 401–411.

    Google Scholar 

  • Center for Mathematical Morphology, Lantuejoul, C. (personal communication).

    Google Scholar 

  • Computer Sciences Corp., DIMES Users Handbook (1973).

    Google Scholar 

  • Duff, M. J. B., “Geometrical Analysis of Image Parts,” in Digital Image Processing and Analysis (Simon, J. C. and Rosenfeld, A., eds.), Leyden, Noordhoff (1977).

    Google Scholar 

  • Dunham, R. G., Line, B. R., and Johnston, G. S., “A Comprehensive System for Producing Functional Maps,” Proc. 7th Symp. Comput. Prog. Tech. (1978).

    Google Scholar 

  • Electro-Magnetic Systems Laboratory, The PECOS System (1973).

    Google Scholar 

  • Eriksson, O., Holmquist, J., Bengstsson, E., and Mordin, B. “CELLO— An Interactive Image Analysis System,” Proc. DEC Users Society, Copenhagen (1978).

    Google Scholar 

  • Fu, K. S., “Special Computer Architectures for Pattern Recognition and Image Processing—An Overview,” Proc. Nat’l Comput. Conf. (1978), pp. 1003–1013.

    Google Scholar 

  • Gemmar, P., “FLIP: A Multiprocessor System with Flexible Structure for Image Processing,” in Computer Architectures for Image Processing (Levialdi, S., ed.), in preparation.

    Google Scholar 

  • Gerritson, F. A., and Monhemius, R. D., “Evaluation of the Delft Image Processor DIP-1,” in Computer Architectures for Image Processing (Levialdi, S., ed.), in preparation.

    Google Scholar 

  • Goddard Space Flight Center, “Small Interactive Image Processing System: Users Manual,” (1973).

    Google Scholar 

  • Granlund, G. H., “An Architecture of a Picture Processor Using a Parallel General Operator,” Proc. 4th Internat. Joint Conf. Pattern Recog., Kyoto (Nov. 1978).

    Google Scholar 

  • IBM Federal Systems Division, Users Guide, Earth Resources Interactive Processing System (1972).

    Google Scholar 

  • Johnson Space Flight Center, Users Guide and Software Documentation for the Algorithm Simulation Test and Evaluation Program (1973).

    Google Scholar 

  • Johnston, E. G., “The PAX II Picture Processing System,” in Picture Processing and Psychopictorics (Lipkin, B. S. and Rosenfeld, A., eds.), New York, Academic Press (1970).

    Google Scholar 

  • Joyce Loebl, Inc., Image Processing Library, Programmers Manual (Jan. 1979).

    Google Scholar 

  • Krevy, R. H., Deveau, L. A., Alpert, N. M., and Brownell, G. L., “PL/S: A Higher Level Language for Image Processing,” Phys. Res. Lab., Mass. Gen. Hosp. (1977).

    Google Scholar 

  • Kruse, B., “A Parallel Picture Processing Machine,” IEEE Trans. Comput. C-22:1Q75 (1973).

    Article  Google Scholar 

  • Kulpa, Z., Institute for Biocybernetics (personal communication).

    Google Scholar 

  • Levialdi, S. (see chapter, this book).

    Google Scholar 

  • Logica Ltd., Redstone, P. (personal communication).

    Google Scholar 

  • Marshall Space Flight Center, Numerical Analysis and Digital Computer Processing of Pictorial Imagery (1973).

    Google Scholar 

  • Pape, A. E., and Truitt, D. L., “The Earth Resources Interactive Processing System (ERIPS) Image Data Access Method (IDAM),” Symp. Mach. Proc. Remotely Sensed Data, Purdue Univ. (1976).

    Google Scholar 

  • Paton, K., Medical Research Council, England (personal communication).

    Google Scholar 

  • Preston, K., Jr., “Feature Extraction by Golay Hexagonal Pattern Transforms,” IEEE Trans. Comput. C-20:1007–1014 (1971).

    Article  Google Scholar 

  • Preston, K., Jr., “Image Manipulative Languages: A Preliminary Survey,” in Pattern Recognition in Practice (Gelsema, E. S., ed.), Amsterdam, North-Holland (1980A).

    Google Scholar 

  • Preston, K., Jr., “Interactive System for Medical Image Processing,” in Real-Time Medical Image Processing (Onoe, M., Preston, K., Jr., and Rosenfeld, A., eds.), New York, Plenum Press (1980B).

    Google Scholar 

  • Purdue University, LARSYS Users Manual (1973).

    Google Scholar 

  • Rutovitz, D., Medical Research Council, Scotland (personal communication).

    Google Scholar 

  • Sternberg, S. (see chapter, this book).

    Google Scholar 

  • Taylor, C. J., Manchester University (personal communication).

    Google Scholar 

  • Toriwaki, J-i., Shiomi, Y., and Fukumura, T., “On the Subroutine Library for Image Processing SLIP,” Tech. Comm. Pattern Recog. Learning (PRL78–69), Inst. Elect. Comm. Engrs. Japan (Jan. 1979)(in Japanese).

    Google Scholar 

  • Uhr, L., “A Language for Parallel Processing of Arrays Embedded in Pascal,” Comput. Sci. Tech. Rpt. #365, Univ. of Wisconsin (Sept. 1979).

    Google Scholar 

  • University College London, Image Processing Group, CAP4 Programmers Manual (1977).

    Google Scholar 

  • University of Kansas, “KANDIDATS: Kansas Digital Image Data System” (1971).

    Google Scholar 

  • Vrolijk, H., University of Leyden (personal communication).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Preston, K. (1981). Languages for Parallel Processing of Images. In: Onoe, M., Preston, K., Rosenfeld, A. (eds) Real-Time Parallel Computing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3893-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3893-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3895-6

  • Online ISBN: 978-1-4684-3893-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics