Skip to main content

Properties and Mechanisms of Locomotion

  • Chapter
Book cover Motor Coordination

Abstract

An account of any behavior must include descriptions of both its “properties” and its “mechanisms.” The “properties” of locomotion include its topographical characteristics, the kinematics, or movement in space and time, and an analysis of these in terms of masses and forces, kinetics. There are two groups of “mechanisms” to be considered. One of these concerns the hardware of which the organism is composed, and the functional relationships between the components. This mechanism has received much attention from neurophysiologists, who have established functional connections between neurons by examining impulses in numerous cells under many different conditions of activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, R. McN. Swimming. In R. McN. Alexander and G. Goldspink (Eds.), Mechanics and Energetics of Animal Locomotion. London: Chapman & Hall, 1977.

    Google Scholar 

  • Alexander, R. McN., and Goldspink, G. (Eds.), Mechanics and Energetics of Animal Locomotion. London: Chapman & Hall, 1977.

    Google Scholar 

  • Andersson, O., Grillner, S., Lindquist, M., and Zomlefer, M. Peripheral control of the spinal pattern generators for locomotion in cat. Brain Research, 1978, 150, 625–630.

    Article  CAS  Google Scholar 

  • Arbib, M. A. Brain, Machines, and Mathematics. New York: McGraw-Hill, 1964.

    Google Scholar 

  • Arbib, M. A. The Metaphorical Brain. An Introduction to Cybernetics as Artificial Intelligence and Brain Theory. New York: Wiley-Interscience, 1972.

    Google Scholar 

  • Ariel, G., and Maulucci, R. A kinetic analysis of the trot in cats. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum, 1976.

    Google Scholar 

  • Arshavsky, Yu. I., Kots, Ya. M., Orlovsky, G. N., Rodionov, I. M., and Shik, M. L. Investigation of the biomechanics of running by the dog. Biophysics, 1965, 10, 737–746.

    Google Scholar 

  • Ayers, A. J. Sensory Integration and Learning Disorders. Los Angeles: Western Psychological Services, 1972.

    Google Scholar 

  • Ayers, J. L., Jr., and Davis, W. J. Neuronal control of locomotion in the lobster, Homarus americanus. I. Motor programs for forward and backward walking, Journal of Comparative Physiology, 1977, 115, 1–27. (a)

    Google Scholar 

  • Ayers, J. L., Jr., and Davis, W. J. Neuronal control of locomotion in the lobster, Homarus americanus. II. Types of walking leg reflexes, Journal of Comparative Physiology, 1977, 115, 29 – 46. (b)

    Article  Google Scholar 

  • Ayers, J. L., Jr., and Davis, W. J. Neuronal control of locomotion in the lobster, Homarus americanus. III. Dynamic organization of walking leg reflexes. Journal of Comparative Physiology, 1978, 123, 289–298.

    Article  Google Scholar 

  • Bard, P. A diencephalic mechanism for the expression of rage with specific reference to the sympathetic nervous system. American Journal of Physiology, 1928, 84, 490–515.

    Google Scholar 

  • Barnes, W. J. P. Proprioceptive influences on motor output during walking in the crayfish, Journal of Physiology (Paris), 1977, 73, 543–563.

    CAS  Google Scholar 

  • Beer, F. P., and Johnston, E. R., Jr. Mechanics for Engineers: Statics and Dynamics. New York: McGraw-Hill, 1962.

    Google Scholar 

  • Bekey, G. A., Chang, C-W., Perry, J., and Hoffer, M. M. Pattern recognition of multiple EMG signals applied to the description of human gait. Proceedings of the IEEE, 1977, 65, 674–681.

    Article  Google Scholar 

  • Bernstein, N. A. On the Construction of Movements. Moscow: Medgiz, 1947. (Monograph in Russian.)

    Google Scholar 

  • Bessonov, A. P., and Umnov, N. V. The analysis of gaits in six-legged vehicles according to their static stability. Proceedings of a Symposium on the Theory of Robots and Manipulators. Udine, Italy: International Center for Mechanical Science, 1973.

    Google Scholar 

  • Bethe, A. Studien über die Plastizität des Nervensystems. I. Mitteilung. Arachnoideen und Crustaceen. Pflügers Archiv für die Gesamte Physiologie des Menschen und der Tiere, 1930, 224, 793–820.

    Google Scholar 

  • Betts, B., Smith, J. L., and Collatos, T. C. Recording fore and hind limb myopotentials during unrestrained movements of cats. Brain Research, 1976, 117, 529–533.

    Article  CAS  Google Scholar 

  • Bowdan, E. Walking and rowing in the water strider, Gerris remigis. I. A cinematographic analysis of walking. Journal of Comparative Physiology, 1978, 123, 43–49.

    Article  Google Scholar 

  • Boylls, C. C., Jr. Olivary unit activity and effect of microstimulation during locomotion. Society for Neuroscience Abstracts, 1977, 3, 55.

    Google Scholar 

  • Brown-Séquard, C. E. Des rapports qui existent entre la lésion des racines motrices et des racines sensitives. Comptes Rendus des Séances de la Société de Biologie et de ses Filiales, 1850, 1, 15–17.

    Google Scholar 

  • Buchwald, J. S., and Brown, K. Subcortical mechanisms of behavioral plasticity. In J. D. Maser (Ed.), Efferent Organization and the Integration of Behavior. New York: Academic Press, 1973.

    Google Scholar 

  • Burrows, M. Neural control of flight in the locust. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Carlson, A. B. Communication Systems: An Introduction to Signals and Noise in Electrical Communication. New York: McGraw-Hill, 1968.

    Google Scholar 

  • Chassin, P. S., Taylor, G. R., Heglund, N. C., and Seeherman, H. J. Locomotion in lions: Energetic cost and maximum aerobic capacity. Zoology, 1976, 49, 1–10.

    Google Scholar 

  • Chestnut, H., and Mayer, R. W. Servomechanisms and Regulating System Design. New York: Wiley, 1951.

    Google Scholar 

  • Cook, T., and Cozzens, B. Human solutions for locomotion. III. The initiation of gait. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Coss, L., Chan, A. K., Goslow, G. E. Jr., and Rasmussen, S. Ipsilateral limb variation in cats during overground locomotion. Brain Research, 1978, 15, 85–93.

    CAS  Google Scholar 

  • Craik, R., Herman, R., and Finley, F. R. Human solutions for locomotion. II. Interlimb coordination. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Creed, R. S., Denny-Brown, D., Eccles, J. C., Liddell, E. G. T., and Sherrington, C. S. Reflex Activity of the Spinal Cord. Oxford: Clarendon Press, 1932. (Reprinted in 1972.)

    Google Scholar 

  • Davis, W. J. Central activation of movements. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Davis, W. J., and Ayers, J. L. Locomotion: Control by positive-feedback optokinetic responses. Science, 1972, 177, 183–185.

    Article  CAS  Google Scholar 

  • Delcomyn, F. An approach to the study of neural activity during behavior in insects. Journal of Insect Physiology, 1976, 22, 1223–1227.

    Article  CAS  Google Scholar 

  • Duysens, J. E. Reflex control of cat walking. Doctoral dissertation. University of Alberta, Canada, 1976.

    Google Scholar 

  • Duysens, J., and Pearson, K. G. Ipsilateral extensor reflexes and cat locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Edgerton, V. R., Grillner, S., Sjöstrom, A., and Zangger, P. Central generation of locomotion in vertebrates. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Eisenstein, B. L., Postillion, F. G., Norgren, K. S., and Wetzel, M. C. Kinematics of treadmill galloping by cats. II. Steady-state coordination under positive reinforcement control. Behavioral Biology, 1977, 21, 89–106.

    Article  Google Scholar 

  • Engberg, I. Reflexes to foot muscles in the cat. Acta Physiologica Scandinavica, 1964, 62, Supplementum 235, 1–64.

    Google Scholar 

  • Engberg, I., and Lundberg, A. An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiologica Scandinavica, 1969, 75, 614–630.

    Article  CAS  Google Scholar 

  • English, A. W. Interlimb coordination during stepping in the cat: an electromyographic analysis. Journal of Neurophysiology, 1979, 42, 229–243.

    CAS  Google Scholar 

  • Evarts, E. V., and Granit, R. Relations of reflexes and intended movements. In S. Homma (Ed.), Progress in Brain Research, Vol. 44: Understanding the Stretch Reflex. Amsterdam: Elsevier/North-Holland Biomedical Press, 1976.

    Google Scholar 

  • Evoy, W. H. Modulation of proprioceptive information in crustacea. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Fearing, F. Reflex Action. A Study in the History of Physiological Psychology. Baltimore: Williams & Wilkins, 1930.

    Google Scholar 

  • Feldman, A. G., and Orlovsky, G. N. Activity of interneurons mediating reciprocal Ia inhibition during locomotion. Brain Research, 1975, 84, 181–194.

    Article  CAS  Google Scholar 

  • Ferster, C. B., and Skinner, B. F. Schedules of Reinforcement. New York: Appleton-Century-Crofts, 1957.

    Book  Google Scholar 

  • Forssberg, H., Grillner, S., Rossignol, S., and Wallén, P. Phasic control of reflexes during locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Fourtner, C. R. Central nervous control of cockroach walking. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Gambaryan, P. P. How Mammals Run. Translated from the Russian by H. Hardin. New York: Wiley, 1974, pp. 203–259.

    Google Scholar 

  • Goldiamond, I. Coping and adaptive behaviors of the disabled. In G. L. Albracht (Ed.), The Sociology of Physical Disability and Rehabilitation. Pittsburgh: University of Pittsburgh, 1976.

    Google Scholar 

  • Goslow, G. E., Jr., Reinking, R. M., and Stuart, D. G. The cat step cycle: Hind limb joint angles and muscle lengths during unrestrained locomotion. Journal of Morphology, 1973, 141, 1–41.

    Article  Google Scholar 

  • Graham Brown, T. The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society (London), Series B, 1911, 84, 308–319.

    Article  Google Scholar 

  • Graham Brown, T. The phenomenon of “narcosis progression” in mammals. Proceedings of the Royal Society (London), Series B, 1913, 86, 140–164.

    Article  Google Scholar 

  • Graham Brown, T. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. Journal of Physiology (London), 1914, 48, 18–46.

    Google Scholar 

  • Graham Brown, T. On the activities of the central nervous system of the un-born foetus of the cat; with a discussion of the question whether progression (walking, etc.) is a “learnt” complex. Journal of Physiology (London), 1915, 49, 208–215.

    Google Scholar 

  • Grillner, S. Locomotion in the spinal cat. In R. B. Stein, K. G. Pearson, R. S. Smith, and J. B. Redford (Eds.), Control of Posture and Locomotion. New York: Plenum Press, 1973. (a)

    Google Scholar 

  • Grillner, S.: Locomotion in the spinal dogfish. Acta Physiologica Scandinavica, 1973(b), 87, 31–32A.

    Article  Google Scholar 

  • Grillner, S. Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews, 1975, 55, 247–304.

    Article  CAS  Google Scholar 

  • Grillner, S. Some aspects on the descending control of the spinal circuits generating locomotor movements. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Grillner, S., and Kashin, S. On the generation and performance of swimming in fish. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Grillner, S., and Zangger, P. Locomotor movements generated by the deafferented spinal cord. Acta Physiologica Scandinavica, 1974, 91, 38–39A.

    Google Scholar 

  • Hagbarth, K.-E. EMG studies of stretch reflexes in man. In L. Widen (Ed.), Recent Advances in Clinical Neurophysiology. Electroencephalography and Clinical Neurophysiology, 1967, Supplement 25, 74–19.

    Google Scholar 

  • Halbertsma, J. M., Miller, S., and van der Merche, F. G. A. Basic programs for the phasing of flexion and extension movements of the limbs during locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Hammond, P. H. The influence of prior instruction to the subject on an apparently involuntary neuro-muscular response. Journal of Physiology (London), 1956, 132, 17P–18P.

    Google Scholar 

  • Hart, B. L. Facilitation by strychnine of reflex walking in spinal dogs. Physiology and Behavior, 1971, 6, 627–628.

    Article  CAS  Google Scholar 

  • Hazen, H. L. Theory of servomechanisms. Journal of the Franklin Institute, 1934, 218, 279–331.

    Article  Google Scholar 

  • Hemami, H., Weimer, F. C., and Koozekanini, S. H. Some aspects of the inverted pendulum problem for modeling of locomotion systems. 14th Joint Automatic Control Conference Preprint Volume, Columbus, Ohio, 1973, pp. 132–137. IEEE Catalog No. 73CHO 750–0 CSS.

    Google Scholar 

  • Henneman, E., Clamann, H. P., Gillies, J. D., and Skinner, R. D. Rank order of motoneurons within a pool: Law of combination. Journal of Neurophysiology, 1974, 37, 1338–1349.

    CAS  Google Scholar 

  • Herman, R. M., Grillner, S., Stein, P. S. G., and Stuart, D. G. (Eds.). Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Herman, R., Wirta, R., Bampton, S., and Finley, F. R. Human solutions for locomotion. I. Single limb analysis. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Hildebrand, M. Symmetrical gaits of horses. Science, 1965, 150, 701–708.

    Article  CAS  Google Scholar 

  • Hildebrand, M. Analysis of the symmetrical gaits of tetrapods. Folia Biotheoretica, 1966, 6, 1–22.

    Google Scholar 

  • Hildebrand, M. Analysis of tetrapod gaits: General considerations and symmetrical gaits. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Hildebrand, M. Analysis of asymmetrical gaits. Journal of Mammalogy, 1977, 58, 131–156.

    Article  Google Scholar 

  • Hinsey, J. C., Ranson, S. W., and McNattin, R. F. The role of the hypothalamus and mesencephalon in locomotion. Archives of Neurology and Psychiatry, 1930, 23, 1–43.

    Article  Google Scholar 

  • Hoffer, J. A., and Marks, W. B. Long-term peripheral nerve activity during behavior in the rabbit. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Houk, J. C. The phylogeny of muscular control configurations. Biocybernetics, 1972, 4, 125–144.

    Google Scholar 

  • Howell, A. B. Speed in Animals, pp. 217–247. Chicago: University of Chicago Press, 1944.

    Google Scholar 

  • Hoyle, G. Arthropod walking. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Hultborn, H. Convergence on interneurones in the reciprocal Ia inhibitory pathway to motoneu-rones. Acta Physiologica Scandinavics, 1972, Supplementum 375, 1–42.

    Google Scholar 

  • Hultborn, H., Jankowska, E., and Lindström, S. Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. Journal of Physiology (London), 1971, 215, 591–612. (a)

    CAS  Google Scholar 

  • Hultborn, H., Jankowska, E., and Lindström, S. Recurrent inhibition of interneurones monosy-naptically activated from group Ia afferents. Journal of Physiology (London), 1971, 215, 613–636. (b)

    CAS  Google Scholar 

  • Jankowska, E., and Smith, D. O. Antidromic activation of Renshaw cells and their axonal projections. Acta Physiologica Scandinavica, 1973, 88, 198–214.

    Article  CAS  Google Scholar 

  • Jankowska, E., Jukes, M. G. M., Lund, S., and Lundberg, A. The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiologica Scandinavica, 1967, 70, 369–388. (a)

    Article  CAS  Google Scholar 

  • Jankowska, E., Jukes, M. G. M., Lund, S., and Lundberg, A. The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from flexor reflex afferents. Acta Physiologica Scandinavica, 1967, 70, 389–402. (b)

    Article  CAS  Google Scholar 

  • Jordan, L. M., and Steeves, J. D. Chemical lesioning of the spinal noradrenaline pathway: Effects on locomotion in the cat. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Kashin, S. M., Feldman, A. G., and Orlovsky, G. N. Locomotion of fish evoked by electrical stimulation of the brain. Brain Research, 1974, 82, 41–47.

    Article  CAS  Google Scholar 

  • Kato, I., and Tsuiki, H. Hydraulically powered biped walking machine with a high carrying capacity. Proceedings of the Fourth International Symposium on External Control of Human Extremities. Dubrovnik, Yugoslavia, 1972.

    Google Scholar 

  • Kljacic, M., Kralj, A., Bajd, T., Stanic, U., and Trnkoczy, A. Some problems of mathematical quantitative gait evaluation. Proceedings of the Fifth International Symposium on External Control of Human Extremities. Dubrovnik, Yugoslavia, pp. 279–287, 1975.

    Google Scholar 

  • Lennard, P. R., and Stein, P. S. G. Swimming movements elicited by electrical stimulation of turtle spinal cord. I. Low spinal and intact preparations. Journal of Neurophysiology, 1977, 40, 768–778.

    CAS  Google Scholar 

  • Lindsay, K. W., Roberts, T. D. M., and Rosenberg, J. R. Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cat. Journal of Physiology (London), 1976, 261, 583–601.

    CAS  Google Scholar 

  • Lindström, S., and Schomburg, E. D. Recurrent inhibition from motor axon collaterals of ventral spinocerebellar tract neurones. Acta Physiologica Scandinavica, 1973, 88, 505–515.

    Article  Google Scholar 

  • Lissman, H. W. The neurological basis of the locomotory rhythm in the spinal dogfish (Scyllium canicula, Acanthias vulgaris). II. The effect of de-afferentation. Journal of Experimental Biology, 1946, 23, 162–176.

    Google Scholar 

  • Lockard, D. E., Traher, L. M., and Wetzel, M. C. Reinforcement influences upon topography of treadmill locomotion by cats. Physiology and Behavior, 1976, 16, 141–146.

    Article  CAS  Google Scholar 

  • Loeb, G. E., and Duysens, J. The unit activity of primary and secondary afferents from cat hindlimb muscle spindles during normal walking. Society for Neuroscience Abstracts, 1978, 4, p. 300.

    Google Scholar 

  • Loeb, G. E., Bak, M. J., and Duysens, J. Long-term unit recording from somatosensory neurons in the spinal ganglia of the freely walking cat. Science, 1977, 197, 1192–1194.

    Article  CAS  Google Scholar 

  • Lundberg, A., and Phillips, G. G. T. Graham Brown’s film on locomotion in the decerebrate cat. Journal of Physiology (London), 1973, 231, 90–91P.

    Google Scholar 

  • Magnus, R. Die Körperstellung. Berlin: Springer, 1924.

    Google Scholar 

  • Manter, J. T. The dynamics of quadrupedal walking. Journal of Experimental Biology, 1938, 15, 522–540.

    Google Scholar 

  • Matthews, P. B. C. Mammalian Muscle Receptors and Their Central Actions. London: Edward Arnold, 1972.

    Google Scholar 

  • Miller, S., and Scott, P. D. The spinal locomotor generator. Experimental Brain Research, 1977, 30, 387–403.

    Article  CAS  Google Scholar 

  • Miller, S., and van der Meché, F. G. A. Coordinated stepping of all four limbs in the high spinal cat. Brain Research, 1976, 109, 395–398.

    Article  CAS  Google Scholar 

  • Miller, S., van der Burg, J., and van der Meché, F. G. A. Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Research, 1975, 91, 217–237.

    Article  CAS  Google Scholar 

  • Murthy, K. S. K., Gildenberg, P. L., and Marchand, J. E. Descending long-spinal excitation of lumbar alpha and gamma motoneurons evoked by stretch of dorsal neck muscles. Brain Research, 1978, 140, 165–170.

    Article  CAS  Google Scholar 

  • Muybridge, E. Animals in Motion. New York: Dover, 1957. (Originally published, 1887.)

    Google Scholar 

  • MacMillan, D. L. A physiological analysis of walking in the American lobster (Homarus americanus). Philosophical Transactions of the Royal Society, Series B, 1975, 270, 1–59.

    Article  CAS  Google Scholar 

  • McCrea, D. A. Activity of spinal neurons during controlled locomotion. Doctoral dissertation. University of Manitoba, Canada, 1979.

    Google Scholar 

  • McElligott, J. G. Cerebellar neuronal firing patterns in the intact and unrestrained cat during walking. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • McFarland, D. J. Feedback Mechanisms in Animal Behaviour, New York: Academic Press, 1971.

    Google Scholar 

  • McGhee, R. B. Some finite state aspects of legged locomotion. Mathematical Biosciences, 1968, 2, 67–84.

    Article  Google Scholar 

  • McGhee, R. B. Robot locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • McGhee, R. B., and Frank, A. A. On the stability properties of quadruped creeping gaits. Mathematical Biosciences, 1968, 3, 331–351.

    Article  Google Scholar 

  • McGhee, R. B., and Jain, A. K. Some properties of regularly realizable gait matrices. Mathematical Biosciences, 1972, 13, 179–183.

    Article  Google Scholar 

  • Nelson, R. C., Dillman, C. J., Lagasse, P., and Bickett, P. Biomechanics of overground versus treadmill running. Medicine and Science in Sports, 1972, 4, 233–240.

    Article  CAS  Google Scholar 

  • Norgren, K. S., Seelhorst, Sr. E., and Wetzel, M. C. Kinematics of treadmill galloping by cats. I. Steady-state coordination under aversive control. Behavioral Biology, 1977, 21, 66–88.

    Article  Google Scholar 

  • Okada, M., Ishida, H., and Kimura, T. Biomechanical features of bipedal gait in human and nonhuman primates. In P. V. Komi (Ed.), Biomechanics V-A. Proceedings of the Fifth International Seminar on Biomechanics, Jyväkyla, Finland. Baltimore: University Park Press, 1975.

    Google Scholar 

  • Orlovsky, G. N. Spontaneous and induced locomotion of the thalamic cat. Biophysics, 1969, 14, 1154–1162.

    Google Scholar 

  • Orlovsky, G. N. Influence of the cerebellum on the reticulospinal neurones during locomotion. Biophysics, 1970, 15, 928–936.

    Google Scholar 

  • Orlovsky, G. N. Work of the Purkinje cells during locomotion. Biophysics, 1972, 17, 935–941.

    Google Scholar 

  • Orlovsky, G. N., and Shik, M. L. Standard elements of cyclic movement. Biophysics, 1965, 10, 935–944.

    Google Scholar 

  • Paillard, J., and Massion, J. Motor aspects of behaviour and programmed nervous activities. Brain Research, 1974, 71, Special Issue, 189–575.

    Article  Google Scholar 

  • Patterson, M. M. Mechanisms of classical conditioning and fixation in spinal mammals. In A. H. Riesen, and R. F. Thompson (Eds.), Advances in Psychobiology, Volume 3. New York: Wiley, 1976.

    Google Scholar 

  • Pearson, K. G., and Duysens, J. Function of segmental reflexes In the control of stepping in cockroaches and cats. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Pearson, K. G., and Iles, J. F. Nervous mechanisms underlying intersegmental co-ordination of leg movements during walking in the cockroach. Journal of Experimental Biology, 1973, 58, 725–744.

    Google Scholar 

  • Pedotti, A. A study of motor coordination and neuromuscular activities in human locomotion. Biological Cybernetics, 1977, 26, 53–62.

    Article  CAS  Google Scholar 

  • Penfield, W., and Roberts, L. Speech and Brain-Mechanisms. Princeton: Princeton University Press, 1959.

    Google Scholar 

  • Perret, C. Neural control of locomotion in the decorticate cat. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Perret, C., and Cabelguen, J.-M. Central and reflex participation in the timing of locomotor activations of a bifunctional muscle, the semi-tendinosus, in the cat. Brain Research, 1976, 106, 390–395.

    Article  CAS  Google Scholar 

  • Philippson, M. L’autonomie et la centralisation dans le système nerveux des animaux. Travaux du Laboratoire de Physiologie de l’Institut Solvay (Bruxelles), 1905, 7, 1–208.

    Google Scholar 

  • Porter, R. Functions of the mammalian cerebral cortex in movement. Progress in Neurobiology, 1973, 1, 1–51.

    Article  Google Scholar 

  • Prochazka, A., Westerman, R. A., and Ziccone, S. P. Ia afferent activity during a variety of voluntary movements in the cat. Journal of Physiology (London), 1977, 268, 423–448.

    CAS  Google Scholar 

  • Ramóny Cajal, S. Histologie du Système Nerveux de L’Homme et des Vertébrés. Tome II. Paris: Maloine, 1911.

    Google Scholar 

  • Rasmussen, S., Chan, A. K., and Goslow, G. E., Jr. The cat step cycle: Electromyographic patterns for hindlimb muscles during posture and unrestrained locomotion. Journal of Morphology, 1978, 155, 253–269.

    Article  CAS  Google Scholar 

  • Roaf, H. E., and Sherrington, C. S. Further remarks on the mammalian spinal preparation. Quarterly Journal of Experimental Physiology, 1910, 3, 209–211.

    Google Scholar 

  • Roberts, T. D. M. The role of vestibular and neck receptors in locomotion. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Roeder, K. D. The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.). Journal of Experimental Zoology, 1937, 76, 353–374.

    Article  Google Scholar 

  • Root, T. M., and Bowerman, R. F. Intra-appendage movements during walking in the scorpion Hadrurus Arizonensis. Comparative Biochemistry and Physiology, 1978, 59A, 49–56.

    Article  Google Scholar 

  • Rossignol, S. The control of crossed extensor and crossed flexor responses. Society for Neuroscience Abstracts, 1977, 3, p. 277.

    Google Scholar 

  • Rossignol, S., and Gauthier, L. Patterns of contralateral limb responses to nociceptive stimuli during locomotion. Society for Neuroscience Abstracts, 1978, 4, p. 304.

    Google Scholar 

  • Ruch, T. C., and Watts, J. W. Reciprocal changes to reflex activity of the forelimbs induced by post-brachial “cold-block” of the spinal cord. Journal of Physiology (London), 1934, 110, 362–375.

    Google Scholar 

  • Ryall, R. W. Renshaw cell mediated inhibition of Renshaw cells: Patterns of excitation and inhibition from impulses in motor axon collaterals. Journal of Neurophysiology, 1970, 33, 257–270.

    CAS  Google Scholar 

  • Schomburg, E. D., Roesler, J., and Meinck, H.-M. Phase-dependent transmission in the excitatory propriospinal reflex pathway from forelimb afferents to lumbar motoneurones during fictive locomotion. Neuroscience Letters, 1977, 4, 249–252.

    Article  CAS  Google Scholar 

  • Severin, F. V. The role of the gamma motor system in the activation of the extensor alpha motor neurones during controlled locomotion. Biophysics, 1970, 15, 1138–1145.

    Google Scholar 

  • Severin, F. V., Shik, M. L., and Orlovsky, G. N. Work of the muscles and single motor neurones during controlled locomotion. Biophysics, 1967, 12, 762–772.

    Google Scholar 

  • Severin, F. V., Orlovsky, G. N., and Shik, M. L. Reciprocal influences on work of single motoneurons during controlled locomotion. Bulletin of Experimental Biology and Medicine, 1968, 66, 713–716.

    Article  Google Scholar 

  • Shannon, C. E. The mathematical theory of communication. Bell System Technical Journal, 1948, 27, 379–423

    Google Scholar 

  • Shannon, C. E. The mathematical theory of communication. Bell System Technical Journal, 1948, 27, 623–656.

    Google Scholar 

  • Sherrington, C. S. Decerebrate rigidity and the reflex co-ordination of movements. Journal of Physiology (London), 1898, 22, 319–322.

    CAS  Google Scholar 

  • Sherrington, C. The Integrative Action of the Nervous System. Cambridge: University Press, 1906.

    Google Scholar 

  • Sherrington, C. S. Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Journal of Physiology (London), 1910, 40, 28–121.

    CAS  Google Scholar 

  • Shik, M. L., and Orlovsky, G. N. Neurophysiology of locomotor automatism. Physiological Reviews, 1976, 56, 465–501.

    CAS  Google Scholar 

  • Shik, M. L., Severin, F. V., and Orlovsky, G. N. Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics, 1966, 11, 756–765.

    Google Scholar 

  • Sidman, M. Tactics of Scientific Research. New York: Basic Books, 1960.

    Google Scholar 

  • Sirota, M. G., Sirota, T. I., and Shik, M. L. Circulation during controlled locomotion in the mesencephalic cat. Bulletin of Experimental Biology and Medicine, 1971, 21, 95–98.

    Article  Google Scholar 

  • Skinner, B. F. The Behavior of Organisms. An Experimental Analysis. New York: Appleton-Century-Crofts, 1938.

    Google Scholar 

  • Skinner, B. F. Science and Human Behavior. New York: Macmillan, 1953.

    Google Scholar 

  • Skinner, B. F. Verbal Behavior. Englewood Cliffs, N.J.: Prentice-Hall, 1957.

    Book  Google Scholar 

  • Skinner, B. F. Contingencies of Reinforcement. Englewood Cliffs, N.J.: Prentice-Hall, 1969.

    Google Scholar 

  • Skinner, B. F. About Behaviorism. New York: Alfred A. Knopf, 1974.

    Google Scholar 

  • Stein, P. S. G. Mechanisms of interlimb phase control. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Stein, P. S. G. A comparative approach to the neural control of locomotion. In G. Hoyle (Ed.), Identified Neurons and Behavior of Arthropods. New York: Plenum Press, 1977.

    Google Scholar 

  • Stein, P. S. G. Motor systems, with specific reference to the control of locomotion. Annual Review of Neuroscience, 1978, 1, 61–81.

    Article  CAS  Google Scholar 

  • Stuart, D. G., Withey, T. P., Wetzel, M. C., and Goslow, Jr. G. E. Time constraints for interlimb co-ordination in the cat during unrestrained locomotion. In R. B. Stein, K. G. Pearson, R. S. Smith, and J. B. Redford (Eds.), Control of Posture and Locomotion. New York: Plenum Press, 1973.

    Google Scholar 

  • Sukhanov, V. B. General System of Symmetrical Locomotion of Terrestrial Vertebrates and Some Features of Movement of Lower Tetrapods. New Delhi: Amerind, 1974.

    Google Scholar 

  • Sun, S.-S. A theoretical study of gaits for legged locomotion systems. Doctoral dissertation. Ohio State University, 1974.

    Google Scholar 

  • Székely, G., and Cźeh, G. Organization of locomotion. In R. Llinás and W. Precht (Eds.), Frog Neurobiology. Berlin: Springer-Verlag, 1976.

    Google Scholar 

  • Taub, E. Motor behavior following deafferentation in the developing and motorically mature monkey. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Taylor, C. R. Energy cost of locomotion. In J. Bous, K. Schmidt-Nielsen, and S. H. P. Maddrell (Eds.), Comparative Physiology. Amsterdam: North-Holland, 1973.

    Google Scholar 

  • ten Cate, J. Quelques remarques à propos de l’innervation des mouvements locomotaires de la blatte (Periplaneta americana). Archives Néerlandaises de Physiologie, 1941, 25, 401–409.

    Google Scholar 

  • Terzuolo, C., and Terzian, H. Cerebellar increase of postural tonus after de-afferentation and labyrinthectomy. Journal of Neurophysiology, 1953, 16, 551–561.

    CAS  Google Scholar 

  • Tokuriki, M. Electromyographic and joint-mechanical studies in quadrupedal locomotion. III. Gallop. Japanese Journal of Veterinary Science, 1974, 36, 121–132.

    Article  CAS  Google Scholar 

  • Tokuriki, M. Function of the trunk epaxial muscles in the dog’s locomotion (walk and trot). Japanese Journal of Electroencephalography and Electromyography, 1976, 4, 109p. (In Japanese.)

    Google Scholar 

  • Tokuriki, M. Function of neck epaxial muscles in dog’s locomotion (walk and trot). Japanese Journal of Electroencephalography and Electromyography, 1977, 5, 53p. (In Japanese.)

    Google Scholar 

  • Tosney, T., and Hoyle, G. Automatic entrainment for a cellular learning study. Society for Neuroscience Abstracts, 1973, p. 238.

    Google Scholar 

  • Twitmyer, E. B. A Study of the Knee-jerk. Philadelphia: Winston, 1902.

    Google Scholar 

  • Udo, M., Oda, Y., Tanaka, K., and Horikawa, J. Cerebellar control of locomotion investigated in cats: discharges from Deiters’ neurones, EMG and limb movements during local cooling of the cerebellar cortex. In S. Homma (Ed.), Progress in Brain Research, vol. 44: Understanding the Stretch Reflex. New York: Elsevier/North-Holland Biomedical press, 1976.

    Google Scholar 

  • Udo, M., Matsukawa, K., and Kamei, H. Effects of partial cooling of cerebellar cortex at lobules V and IV of the intermediate part in the decerebrate walking cats under monitoring vertical floor reactions. Brain Research, 1979, 160, 559–564.

    Article  CAS  Google Scholar 

  • Viala, D., and Vidal, C. Evidence for distinct spinal locomotion generators supplying respectively fore- and hindlimbs in the rabbit. Brain Research, 1978, 155, 182–186.

    Article  CAS  Google Scholar 

  • Vukobratović, M., Frank, A. A., and Juričić, D. On the stability of biped locomotion. IEEE Transactions on Biomedical Engineering, 1970, BME-17, 23–35.

    Google Scholar 

  • Vukobratović, M., Ciric, V., Hristic, D., and Stepanenko, J. Contribution to the study of anthropomorphic robots. Proceedings of the IFAC V World Congress, Paris, 1972, paper 18.1.

    Google Scholar 

  • Watt, D. G. D. Responses of cats to sudden falls: An otolith-originating reflex assisting landing. Journal of Neurophysiology, 1976, 39, 257–265.

    CAS  Google Scholar 

  • Watt, D. G. D., and Wetzel, M. C. Linear head movements of walking and trotting cats. Society for Neuroscience Abstracts, 1977, 3, p. 280.

    Google Scholar 

  • Weiss, P. Self-differentiation of the basic patterns of coordination. Comparative Psychological Monographs, 1941, 17, 1–96.

    Google Scholar 

  • Wentink, G. H. The action of the hind limb musculature of the dog in walking. Acta Anatomica, 1976, 96, 70–80.

    Article  CAS  Google Scholar 

  • Wetzel, M. C., and Stuart, D. G. Ensemble characteristics of cat locomotion and its neural control. Progress in Neurobiology, 1976, 7, 1–98.

    Article  CAS  Google Scholar 

  • Wetzel, M. C., Atwater, A. E., Wait, J. V., and Stuart, D. G. Neural implications of different profiles between treadmill and overground timings in cats. Journal of Neurophysiology, 1975, 38, 492–501.

    CAS  Google Scholar 

  • Wetzel, M. C., Atwater, A. E., and Stuart, D. G. Movements of the hindlimb during locomotion of the cat. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Wetzel, M. C., Atwater, A. E., Wait, J. V., and Stuart, D. G. Kinematics of locomotion by cats with a single hindlimb deafferented. Journal of Neurophysiology, 1976, 39, 667–678.

    CAS  Google Scholar 

  • Wetzel, M. C., Anderson, R. C., Brady, T. H., Jr., and Norgren, K. S. Kinematics of treadmill galloping by cats. III. Coordination during gait conversions and implications for neural control. Behavioral Biology, 1977, 21, 107–127.

    Article  Google Scholar 

  • Wiener, N. Cybernetics. New York: Wiley, 1948.

    Google Scholar 

  • Wilson, D. M. Genetic and sensory mechanisms for locomotion and orientation in animals. American Scientist, 1972, 60, 358–365.

    CAS  Google Scholar 

  • Zajac, F. E., and Young, J. L. Discharge patterns of motor units during cat locomotion and their relation to muscle performance. In R. M. Herman, S. Grillner, P. S. G. Stein, and D. G. Stuart (Eds.), Neural Control of Locomotion. New York: Plenum Press, 1976.

    Google Scholar 

  • Ziwet, A., and Field, P. Introduction to Analytical Mechanics. New York: Macmillan, 1912.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Wetzel, M.C., Howell, L.G. (1981). Properties and Mechanisms of Locomotion. In: Towe, A.L., Luschei, E.S. (eds) Motor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3884-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3884-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3886-4

  • Online ISBN: 978-1-4684-3884-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics