Skip to main content

Opioid Receptors and Endogenous Opioid Peptides

  • Chapter
Opioid Dependence
  • 85 Accesses

Abstract

According to Ariëns et al. (1964b), the concept of receptors was first proposed by J. N. Langley in 1905 to account for the actions of nicotine and curare at the myoneural junction, and by P. Ehrlich in 1906 to account for specific interactions between antigens and antibodies and for the selectivity of dyes for certain components of living cells. On the basis of his research, Ehrlich (1913) concluded that “If the law is true in chemistry that ‘corpora non agunt nisi liquida,’ then for chemotherapy the principle is true that ‘corpora non agunt nisi fixata”’ (substances do not act unless they are fixated). In modern drug-receptor interaction theory, reversible “fixation” of the drug to the receptor is held to produce the pharmacological effect, and drug-receptor interactions are viewed as analogous to substrate-enzyme interactions (Michaelis & Menten, 1913). In this view, subject to some qualifications expressed by Ariëns et al. (1956), the receptor concentration is regarded as if it were an enzyme concentration, the drug concentration as if it were a substrate concentration, and the pharmacological effect of the drug-receptor combination as if it were the initial reaction velocity of the enzyme-catalyzed substrate change. On the basis of these and some other assumptions, the dose-effect relationships of agonists, partial agonists, and antagonists, as well as their intrinsic activities (efficacies) and affinities, have been calculated. The term agonist implies that a given pharmacological effect of a drug increases with its dose (or its concentration) up to a maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. E., 1976, Naloxone reversal of analgesia produced by brain stimulation in the human, Pain 2: 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Aghajanian, G. K., 1978, Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine, Nature (London) 276: 183–188.

    Google Scholar 

  • Akil, H., Mayer, D. J., and Liebeskind, J. C., 1972, Comparaison chez le rat entre l’analgésie induite par stimulation de la substance grise périaqueducale et l’analgésie morphinique, C. R. Acad. Sci. (Paris) 274: 3603–3605.

    CAS  Google Scholar 

  • Akil, H., Mayer, D. J., and Liebeskind, J. C., 1976, Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist, Science 191: 961–962.

    Article  PubMed  CAS  Google Scholar 

  • Akil, H., Richardson, D. E., Hughes, J., and Barchas, J. S., 1978, Enkephalin-like material elevated in ventricular cerebrospinal fluid of patients after analgetic focal stimulation, Science 201:463–465.

    Article  PubMed  CAS  Google Scholar 

  • Ariëns, E. J., van Rossum, J. M., and Simonis, A. M., 1956, A theoretical basis of molecular pharmacology. Part I. Interactions of one or two compounds with one receptor system, Arzneimittelforschung 6: 282–293.

    PubMed  Google Scholar 

  • Ariëns, E. J., Simonis, A. M., and van Rossum, J. M., 1964a, Drug-receptor interaction: Interaction of one or more drugs with different receptor systems, in Molecular Pharmacology: The Mode of Action of Biologically Active Compounds, Vol. 1 ( E. J. Ariëns, Ed.), pp. 287–393. Academic Press, New York.

    Google Scholar 

  • Ariëns, E. J., Simonis, A. M., and van Rossum, J. M., 1964b, Drug-receptor interaction: Interaction of one or more drugs with one receptor system, in Molecular Pharmacology: The Mode of Action of Biologically Active Compounds, Vol. 1 ( E. J. Ariëns, Ed.), pp. 119–286. Academic Press, New York.

    Google Scholar 

  • Atweh, S. F., and Kuhar, M. J., 1977, Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla, Brain Res. 124: 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Bell, J. A., and Martin, W. R., 1977, The effect of the narcotic antagonists naloxone, naltrexone and nalorphine on spinal cord C-fiber reflexes evoked by electrical stimulation or radiant heat, Eur. J. Pharmacol. 42: 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Belluzzi, J. D., Grant, N., Garsky, V., Sarantakis, D., Wise, C. D., and Stein, L., 1976, Analgesia induced in vivo by central administration of enkephalin in rat, Nature (London) 260: 625–626.

    CAS  Google Scholar 

  • Bird, S. J., and Kuhar, M. J., 1977, Iontophoretic application of opiates to the locus coeruleus, Brain Res. 122: 523–533.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, F., Segal, D., Ling, N., and Guillemin, R., 1976, Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental illness, Science 194: 630–632.

    Article  PubMed  CAS  Google Scholar 

  • Cox, B. M., Opheim, K. E., Teschemacher, H., and Goldstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 2. Purification and properties. Life Sci. 16:1777–1782.

    Article  PubMed  CAS  Google Scholar 

  • Cox, B. M., Goldstein, A., and Li, C. H., 1976, Opioid activity of a peptide, betalipotropin-(61–91), derived from beta-lipotropin, Proc. Natl. Acad. Sci. USA 73: 1821–1823.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., Feinberg, A. P., and Snyder, S. H., 1976, Butyrophenone influences on the opiate receptor, Eur. J. Pharmacol. 36: 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Czlonkowski, A., Höllt, V., and Herz, A., 1978, Binding of opiates and endogenous opioid peptides to neuroleptic receptor sites in the corpus stratum, Life Sci. 22: 953–962.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich, P., 1913, Chemotherapeutics: Scientific principles, methods and results, Lancet 185: 445–451.

    Google Scholar 

  • Frederickson, R. C. A., and Norris, F. H., 1976, Enkephalin-induced depression of single neurons in brain areas with opiate receptors-antagonism by naloxone, Science 194: 440–442.

    Article  PubMed  CAS  Google Scholar 

  • Gero, A., 1971, Intimate study of drug action. III. Mechanisms of molecular drug action, in Drill’s Pharmacology in Medicine ( J. R. DiPalma, Ed.), pp. 67–98. McGraw-Hill Book Company, New York.

    Google Scholar 

  • Gilbert, P. E., and Martin, W. R., 1976, The effects of morphine-and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog, J. Pharmacol. Exp. Ther. 198: 66–82.

    PubMed  CAS  Google Scholar 

  • Gold, M. S., Redmond, D. E., and Kleber, H. D., 1978a, Clonidine blocks acute opiate-withdrawal symptoms, Lancet 2: 599–6602.

    Article  PubMed  CAS  Google Scholar 

  • Gold, M. S., Redmond, D. E., and Kleber, H. D., 1978b, Clonidine in opiate withdrawal, Lancet 1:929–930.

    Google Scholar 

  • Goldstein, A., 1973, The search for the opiate receptor, in Pharmacology and the Future of Man. Proc. 5th Congr. Pharmacology, San Francisco 1972, Vol. 1 ( J. Cochin, Ed.), pp. 140–159. Karger, Basel.

    Google Scholar 

  • Goldstein, A., and Cox, B. M., 1977, Opioid peptides (endorphins) in pituitary and brain, Psychoneuroendocrinology 2:11–16.

    Google Scholar 

  • Goldstein, A., and Hilgard, E. R., 1975, Failure of the opiate antagonist naloxone to modify hypnotic analgesia, Proc. Nat. Acad. Sci. USA 72: 2041–2043.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, A., Lowney, K. E., and Pal, B. K., 1971, Stereospecific and non-specific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain, Proc. Nat. Acad. Sci. USA 68: 1742–1747.

    Article  PubMed  CAS  Google Scholar 

  • Grevert P., and Goldstein, A., 1977a, Effects of naloxone on experimentally induced ischemic pain and on mood in human subjects, Proc. Natl. Acad. Sci. USA 74: 1291–1294.

    Article  PubMed  CAS  Google Scholar 

  • Grevert, P., and Goldstein, A., 1977b, Some effects of naloxone on behavior in the mouse, Psychopharmacology 53:111–113.

    Article  PubMed  CAS  Google Scholar 

  • Grevert, P., and Goldstein, A., 1978, Endorphins: Naloxone fails to alter experimental pain or mood in humans, Science 199: 1093–1095.

    Article  PubMed  CAS  Google Scholar 

  • Guillemin, R., 1978, Peptides in the brain: The new endocrinology of the neuron, Science 202: 390–402.

    Article  PubMed  CAS  Google Scholar 

  • Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., and Bloom, F., 1977, ß-endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland, Science 197: 1367–1369.

    Article  PubMed  CAS  Google Scholar 

  • Gunne, L. M., Lindstrom, L., and Terenius, L., 1977, Naloxone-induced reversal of schizophrenic hallucinations, J. Neural Transmission 40: 13–19.

    Article  CAS  Google Scholar 

  • Hosobuchi, T., Rossier, J., Bloom, F. E., and Guillemin, R., 1979, Stimulation of human periaqueductal gray for pain relief increases immunoreactive beta-endorphin in ventricular fluid, Science 203: 279–281.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, J., 1975, Isolation of an endogenous compound in the brain with pharmacological properties similar to morphine, Brain Res. 88: 295–308.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R., 1975a, Identification of two related pentapeptides from the brain with potent opiate agonist activity, Nature (London) 258: 577–579.

    Article  CAS  Google Scholar 

  • Hughes, J., Smith, T., Morgan, B., and Fothergill, L., 1975b, Purification and properties of enkephalin—The possible endogenous ligand for the morphine receptor, Life Sci. 16: 1753–1758.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison, M., Kosterlitz, H. W., Leslie, F. M., Waterfield, A. A., and Terenius, L., 1975, Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey, Brit. J. Pharmacol. 55: 541–546.

    Google Scholar 

  • Jacob, J. J., Tremblay, E. C., and Colombel, M. C., 1974, Facilitation de réactions nocicep-tives par la naloxone chez la souris et chez le rat, Psychopharmacologia 37: 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., 1978, Opiate effects after adrenocorticotropin or beta-endorphin injection in the periaqueductal gray matter of rats, Science 201: 1032–1034.

    Article  PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., and Marks, N., 1976, The C-fragment of beta-lipotropin: An endogenous neuroleptic or antipsychotogen? Science 194: 632–634.

    Article  PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., Klee, W. A., Rice, K. C., Ijima, I., and Minamikawa, J., 1977, Stereospecific and nonstereospecific effects of (+)- and (-)-morphine: Evidence for a new class of receptors? Science 198: 842–845.

    Article  PubMed  CAS  Google Scholar 

  • Janowsky, D. C., Segal, D. S., Abrams, A., Bloom, F., and Guillemin, R., 1977, Negative naloxone effects in schizophrenic patients, Psychopharmacology 53: 295–297.

    Article  PubMed  CAS  Google Scholar 

  • Kline, N. S., Li, C. H., Lehmann, H. E., Lajtha, A., Laski, E., and Cooper, T., 1977, Beta-endorphin-induced changes in schizophrenic and depressed patients, Arch. Gen. Psychiat. 34: 1111–1113.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, A. A., McCabe, O. L., and Hanlon, T. E., 1977, The treatment of perceptual disturbances in schizophrenia with naloxone hydrochloride, Amer. J. Psychiat. 134: 1408–1410.

    CAS  Google Scholar 

  • Lehmann, H., Nair, V., and Kline, N. S., 1979, Beta-endorphin and naloxone in psychiatric patients: Clinical and biological effects, Amer. J. Psychiat. 136: 762–766.

    PubMed  CAS  Google Scholar 

  • Lewis, R. V., Gerber, L. D., Stein, S., Stephen, R. L., Grosser, B. I., Velick, S. F., and Udenfriend, S., 1979, On ß„-leu5-endorphin and schizophrenia, Arch. Gen. Psychiat. 36: 237–239.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. H., 1964, Lipotropin, a new active peptide from pituitary glands, Nature (London), 201: 924.

    CAS  Google Scholar 

  • Li, C. H., and Chung, D., 1976, Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands, Proc. Natl. Acad. Sci. USA 73: 1145–1148.

    Article  PubMed  CAS  Google Scholar 

  • Ling, N., Burgus, R., and Guillemin, R., 1976, Isolation, primary structure, and synthesis of alpha-endorphin and gamma-endorphin, two peptides of hypothalamichypophysial origin with morphinomimetic activity, Proc. Natl. Acad. Sci. USA 73: 3942–3946.

    Article  PubMed  CAS  Google Scholar 

  • Loh, H. H., Tseng, L. F., Wei, E., and Li, C. H., 1976, /3-endorphin is a potent analgesic agent, Proc. Natl. Acad. Sci. USA 73: 2895–2898.

    Article  PubMed  CAS  Google Scholar 

  • Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W., 1976, Multiple opiate receptors, in Opiates and Endogenous Opioid Peptides (H. W. Kosterlitz, Ed.), pp. 275–280. Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Lord, J. A. H., Waterfield, A. A., Hughes, J., and Kosterlitz, H. W., 1977, Endogenous opioid peptides: Multiple agonists and receptors, Nature (London) 267: 495–499.

    CAS  Google Scholar 

  • Mains, R. E., Eipper, A. B., and Ling, N., 1977, Common precursor to corticotropins and endorphins, Proc. Nat. Acad. Sci. USA 74: 3014–3018.

    Article  Google Scholar 

  • Martin, W. R., 1967, Opioid antagonists, Pharmacol. Rev. 19: 463–521.

    PubMed  CAS  Google Scholar 

  • Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., and Gilbert, P. E., 1976, The effects of morphine-and nalorphine-like drugs in the nondependent and morphine-dependent chronic spinal dog, J. Pharmacol. Exp. Ther. 197: 517–532.

    PubMed  CAS  Google Scholar 

  • Mayer, D. J., Price, D. D., and Rafü, A., 1977, Antagonism of acupuncture analgesia in man by the narcotic antagonist naloxone, Brain Res. 121: 368–372.

    Article  PubMed  CAS  Google Scholar 

  • Meglio, M., Hosobuchi, Y., Loh, H. H., Adams, J. E., and Li, C. H., 1977, ß-endorphin: Behavioral and analgesic activity in cats, Proc. Natl. Acad. Sci. USA 74:774–776. Michaelis, L., and Menten, M., 1913, Kinetik der Invertinwirkung, Biochem. Ztschr. 49: 333–369.

    Google Scholar 

  • Palmour, R. M., Ervin, F. R., Wagemaker, H., and Cade, R., 1977, Characterization of a peptide derived from the serum of psychiatric patients, Abstr. Soc. Neu rosi. 7: 320 (cited in Lewis et ai., 1979).

    Google Scholar 

  • Pasternak, G. W., Goodman, R., and Snyder, S. H., 1975, An endogenous morphine-like factor in mammalian brain, Life Sci. 16: 1765–1769.

    Article  PubMed  CAS  Google Scholar 

  • Pert, C. B., and Snyder, S. H., 1973, Opiate receptor: Demonstration in nervous tissue, Science 179:1011–1014.

    Google Scholar 

  • Pert, C. B., Pasternak, G., and Snyder, S. H., 1973, Opiate agonists and antagonists discriminated by receptor binding in the brain, Science 182: 1359–1361.

    Article  PubMed  CAS  Google Scholar 

  • Pert, A., Simantov, R., and Snyder, S. H., 1977, A morphine-like factor in mammalian brain: Analgesic activity in rats, Brain Res. 136: 523–533.

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz, B., and Chiu, D., 1976, Naloxone blockade of acupuncture analgesia: Endorphin implicated, Life Sci. 19: 1757–1762.

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz, B., Cheng, R., and Law, P., 1977, Acupuncture reduces electrophysiological and behavioral responses to noxious stimuli: pituitary is implicated, Exp. Neurol. 54: 172–178.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, H., 1925–1926, Die Opiumbehandlung bei Geisteskrankheiten insbesondere bei Melancholie, ihre Geschichte, ihr heutiger Stand und eigene Erfahrungen, Allg. Ztschr. Psychiat. 83: 92–113.

    Google Scholar 

  • Seevers, M. H., and Deneau, G. A., 1961, A critique of the “dual action” hypothesis of morphine physical dependence, Arch. Int. Pharmacodyn. Thér. 140: 514–520.

    Google Scholar 

  • Segal, D. S., Browne, R. G., Bloom, F., Ling, N., and Guillemin, R., 1977, β-endorphin: Endogenous opiate or neuroleptic? Science 198: 411–413.

    Google Scholar 

  • Simon, E. J., Hiller, J. M., and Edelman, I., 1973, Stereospecific binding of the potent narcotic analgesic (3H)etorphine to rat-brain homogenate, Proc. Nat. Acad. Sci. (Washington) 70:1947–1949.

    Google Scholar 

  • Snyder, S. H., 1977, Opiate receptors and internal opiates, Sci. American 236 (3): 44–56.

    Article  CAS  Google Scholar 

  • Snyder, S. H., 1979, Receptors, neurotransmitters and drug responses, New Engl. J. Med. 300: 465–472.

    Article  PubMed  CAS  Google Scholar 

  • Suda, T., Liotta, A. S., and Krieger, D. T., 1978, ß-endorphin is not detectable in plasma from normal human subjects, Science 202: 221–223.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, H., Satoh, M., Akaike, A., Shibata, T., and Kuraishi, Y., 1977, The nucleus reticularis gigantocellularis of the medulla oblongata is a highly sensitive site in the production of morphine analgesia in the rat, Eur. J. Pharmacol. 45: 91–92.

    Article  PubMed  CAS  Google Scholar 

  • Takagi, H., Satoh, M., Akaike, A., Shibata, T., Yajima, H., and Ogawa, H., 1978, Analgesia by enkephalins injected into the nucelus reticularis gigantocellularis of rat medulla oblongata, Eur. J. Pharmacol. 49: 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Terenius, L., 1973, Characteristics of the “receptor” for narcotic analgesics in synaptic plasma membrane fraction from rat brain, Acta Pharmacol. Toxicol. 33: 377–384.

    Article  CAS  Google Scholar 

  • Terenius, L., and Wahlström, A., 1974, Inhibitors of narcotic receptor binding in brain extracts and cerebrospinal fluid, Acta Pharmacol. Toxicol. 35 (Suppl. 1): 55.

    Google Scholar 

  • Terenius, L., and Wahlström, A., 1975a, Morphine-like ligand for opiate receptors in human CSF, Life Sci. 16: 1759–1764.

    Article  CAS  Google Scholar 

  • Terenius, L., and Wahlström, A., 1975b, Search for an endogenous ligand for the opiate receptor, Acta Physiol. Scand. 94: 74–81.

    Article  PubMed  CAS  Google Scholar 

  • Terenius, L., Wahlström, A., and Agren, H., 1977, Naloxone (Narcan) treatment in depression: Clinical observations and effects on CSF endorphins and monoamine metabolites, Psychopharmacology 54: 31–33.

    Article  PubMed  CAS  Google Scholar 

  • Teschemacher, H., Opheim, K. E., Cox, B. M., and Goldstein, A., 1975, A peptide-like substance from pituitary that acts like morphine. 1. Isolation, Life Sci. 16: 1771–1776.

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven, W. M. A., van Praag, H. M., van Ree, J. M., and de Wied, D., 1979, Improvement of schizophrenic patients treated with (des-tyr’)-y-endorphin (DTyE), Arch. Gen. Psychiat. 36: 294–298.

    Article  PubMed  CAS  Google Scholar 

  • Volavka, J., Mallya, A., Baig, S., and Perez-Cruet, J., 1977, Naloxone in chronic schizophrenia, Science 196: 1227–1228.

    Article  PubMed  CAS  Google Scholar 

  • Wagemaker, H., and Cade, R., 1977, The use of hemodialysis in chronic schizophrenia, Amer. J. Psychiat. 134: 684–685.

    PubMed  Google Scholar 

  • Watson, S. J., Berger, P. A., Akil, H., Mills, M. J., and Barchas, J. S., 1978, Effects of naloxone on schizophrenia: Reduction in hallucinations in a subpopulation of subjects, Science 201:73–76.

    Google Scholar 

  • Wei, E., and Loh, H., 1976, Physical dependence on opiate-like peptides, Science 193: 1262–1263.

    Article  PubMed  CAS  Google Scholar 

  • Wikler, A., and Carter, R. L., 1953, Effects of single doses of N-allylnormorphine on hindlimb reflexes of chronic spinal dogs during cycles of morphine addiction, J. Pharmacol. Exp. Ther. 109: 92–101.

    PubMed  CAS  Google Scholar 

  • Wikler, A., and Frank, K., 1948, Hindlimb reflexes in chronic spinal dogs during cycles of addiction to morphine and methadone, J. Pharmacol. Exp. Ther. 94: 382–400.

    PubMed  CAS  Google Scholar 

  • Wikler, A., and Rayport, M., 1954, Lower limb reflexes of a chronic “spinal” man in cycles of morphine and methadone addiction, Arch. Neurol. Psychiat. (Chicago) 71: 160–174.

    CAS  Google Scholar 

  • Wikler, A., Fraser, H. F., and Isbell, H., 1953, N-allylnormorphine; Effects of single doses and precipitation of acute “abstinence syndromes” during addiction to morphine, methadone or heroin in man (post-addicts), J. Pharmacol. Exp. Ther. 109: 8–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Wikler, A. (1980). Opioid Receptors and Endogenous Opioid Peptides. In: Opioid Dependence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3866-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3866-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3868-0

  • Online ISBN: 978-1-4684-3866-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics