Skip to main content

Multiphoton Infrared Excitation and Reaction of Organic Compounds

  • Chapter

Abstract

The field of infrared laser photochemistry has burgeoned in the past several years. Excitation with intense, pulsed, infrared laser radiation has been shown to promote molecules to high vibrational levels of the ground electronic state as the result of the absorption of many infrared photons, frequently in the absence of any collisions. As a consequence, the phenomenon is sometimes referred to as megawatt infrared photochemistry or photochemistry in the electronic ground state. Much interest has centered on laser isotope separation, probing the multiphoton absorption process, and observation of reactions that occur when a molecule finds itself suddenly immersed in a sea of infrared photons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambartzumian, R. V., and Letokhov, V. S., 1977, Multiple photon infrared laser photochemistry, in Chemical and Biochemical Applications of Lasers, Volume III (ed. C. B. Moore ), Academic Press, New York, pp. 167–316.

    Google Scholar 

  • Back, M. H., and Back, R. A., 1979, The decomposition of cyclobutanone vapor induced by infrared radiation from a pulsed CO2 TEA laser, Can. J. Chem. 57:1511.

    Article  CAS  Google Scholar 

  • Bado, P., and van den Bergh, H., 1978, Pressure dependence in the multiphoton dissociation of 32SF6, J. Chem. Phys. 68:4188.

    Article  CAS  Google Scholar 

  • Baldwin, A. C., Barker, J. R., Golden, D. M., Duperrex, R., and van den Bergh, H., 1979, Infrared multiphoton chemistry: Comparison of theory and experiment, solution of the master equation, Chem. Phys. Lett. 62:178.

    Article  CAS  Google Scholar 

  • Bates, Jr., R. D., Flynn, G. W., and Knudtson, J. T., 1970, Laser-induced 16-it fluorescence in SF6: Acoustic effects, J. Chem. Phys. 53:3621.

    Article  CAS  Google Scholar 

  • Bauer, S. H., 1978, How energy accumulation and disposal affect the rates of reaction, Chem. Rev. 78:147.

    Article  CAS  Google Scholar 

  • Benson, S. W., 1978, Thermochemistry and kinetics of sulfur-containing molecules and radicals, Chem. Rev. 78:23.

    Article  CAS  Google Scholar 

  • Benson, S. W., and O’Neal, H. E., 1970, Kinetic data on gas phase unimolecular reactions, United States Department of Commerce, NSRDS-NBS 21.

    Google Scholar 

  • Berry, M. J., 1974, Chloroethylene photochemical lasers: Vibrational energy content of the HC1 molecular elimination products, J. Chem. Phys. 61:3114.

    Article  CAS  Google Scholar 

  • Bialkowski, S. E., and Guillory, W. A., 1980, Dynamic processes of NH2 generated by the IR photolysis of CH3NH2, J. Photochem. in press.

    Google Scholar 

  • Birely, J. H., and Lyman, J. L., 1975, Effect of reagent vibrational energy on measured reaction rate constants, J. Photochem. 4:269.

    Article  CAS  Google Scholar 

  • Black, J., Yablonovitch, E., Bloembergen, N., and Mukamel, S., 1977, Collisionless multi-photon dissociation of SF6: A statistical thermodynamics process, Phys. Rev. Lett. 38:1131.

    Article  CAS  Google Scholar 

  • Black, J., Kolodner, P., Shultz, M., Yablonovitch, E., and Bloembergen, N., 1979, Collisionless multiphoton energy deposition and dissociation of SF6, Phys. Rev. A. 19:704.

    Article  CAS  Google Scholar 

  • Bloembergen, N., and Yablonovitch, E., 1978, Infrared laser induced unimolecular reactions, Physics Today 31:23.

    Article  CAS  Google Scholar 

  • Bomse, D. S., Woodin, R. L., and Beauchamp, J. L., 1978, Multiphoton dissociation of molecules with low power CW infrared lasers, in Advances in Laser Chemistry (ed. A. H. Zewail), Springer, New York.

    Google Scholar 

  • Bomse, D. S., Woodin, R. L., and Beauchamp, J. L., 1979, Molecular activation with low intensity CW infrared laser radiation. Multiphoton dissociation of ions derived from diethyl ether, J. Am. Chem. Soc. 101:5503.

    Article  CAS  Google Scholar 

  • Braun, W., Herron, J. T., Tsang, W., and Churney, K., 1978, High intensity infrared laser irradiation calorimetry: Direct-determination of heat input to chlorodifluoromethane and ethyl acetate, Chem. Phys. Lett. 59:492.

    Article  CAS  Google Scholar 

  • Brenner, D. M., 1978, Infrared multiphoton-induced chemistry of ethyl vinyl ether: Dependence of branching ratio on laser pulse duration, Chem. Phys. Lett. 57:357.

    Article  CAS  Google Scholar 

  • Buechele, J. L., Weitz, E., and Lewis, F. D., 1979, Laser-induced infrared multiphoton isomerization of hexadienes, J. Am. Chem. Soc. 101:3700.

    Article  CAS  Google Scholar 

  • Burak, I., Houston, P, Sutton, D. G., and Steinfeld, J. I., 1970, Observation of laser-induced acoustic waves in SF6, J. Chem. Phys. 53:3632.

    Article  CAS  Google Scholar 

  • Calvert, J. G., and Pitts, Jr., J. N., 1966, Photochemistry, John Wiley, New York, p. 19.

    Google Scholar 

  • Cantrell, C. D., Freund, S. M., and Lyman, J. L., 1979, Laser-induced chemical reactions, in Laser Handbook, Volume III (ed. M. L. Stitch), North-Holland, Amsterdam.

    Google Scholar 

  • Cheng, C., and Keehn, P., 1977, Organic chemistry by infrared lasers. 1. Isomerization of allene and methylacetylene in the presence of silicon tetrafluoride, J. Am. Chem. Soc. 99:5808.

    Article  CAS  Google Scholar 

  • Colussi, A. J., Benson, S. W., Hwang, R. J., and Tiee, J. J., 1977, Intramolecular isotope effect in laser multiphoton dissociation of CH2DCH2C1, Chem. Phys. Lett. 52:349.

    Article  CAS  Google Scholar 

  • Cox, D. M., Hall, R. B., Horsley, J. A., Kramer, G. M., Rabinowitz, P., and Kaldor, A., 1979, The isotope selectivity of IR laser driven unimolecular dissociation of a volatile uranyl compound, Science 205:390.

    Article  CAS  Google Scholar 

  • Danen, W. C., 1979, Infrared laser induced organic reactions. 2. Laser vs. thermal inducement of unimolecular and hydrogen bromide catalyzed bimolecular dehydration of alcohols, J. Am. Chem. Soc. 101:1187.

    Article  CAS  Google Scholar 

  • Danen, W. C., 1980, Pulsed infrared laser induced organic chemical reactions, Opt. Eng. 19:21.

    CAS  Google Scholar 

  • Danen, W. C., and Hanh, N. H., 1980, unpublished results.

    Google Scholar 

  • Danen, W. C., Munslow, W. D., and Setser, D. W., 1977, Infrared laser induced organic reactions. 1. Irradiation of ethyl acetate with a pulsed CO2 laser. Selective inducement vs. thermal reaction, J. Am. Chem. Soc. 99:6961.

    Article  CAS  Google Scholar 

  • Danen, W. C., Koster, D. F., and Zitter, R. N., 1979, Demonstration of Woodward-Hoffmann behavior in the pulsed, infrared laser induced reaction of cis-3,4-dichlorocyclobutene, J. Am. Chem. Soc. 101:4281.

    Article  CAS  Google Scholar 

  • Danen, W. C., Rio, V. C., and Setser, D. W., 1980, unpublished results.

    Google Scholar 

  • Dever, D. F., and Grunwald, E., 1976, Megawatt infrared laser chemistry of CCIF3 and CCI3F. 1. Photochemistry, Photophysics, and Effect of H2, J. Am. Chem. Soc. 98:5055.

    Article  CAS  Google Scholar 

  • Douglas, D. J., and Moore, C. B., 1979, Vibrational relaxation of HF(v = 3, 4) by HF, H2, D2, CO2, and isobutene, in Laser-Induced Processes in Molecules, Physics and Chemistry (eds. K. L. Kompa and S. D. Smith), Springer-Verlag, New York, pp. 337–338.

    Google Scholar 

  • Drozdoski, W. S., Fakhv, A., and Bates, Jr., R. D., 1977, Deactivation of vibrationally excited CD3H using laser-induced fluorescence, Chem. Phys. Lett. 47:309.

    Article  CAS  Google Scholar 

  • Drozdoski, W. S., Bates, Jr., R. D., and Siebert, D. R., 1978, Vibrational energy flow in CD3H and CD3H-polyatomic mixtures, J. Chem. Phys. 69:863.

    Article  CAS  Google Scholar 

  • Frey, H. M., and Pope, B. M. 1966, Thermal unimolecular isomerization of cis-hexa-1,3-diene, J. Chem. Soc. A, 1701.

    Google Scholar 

  • Frey, H. M., and Walsh, R., 1978, Unimolecular reactions, in Gas Kinetics and Energy Transfer, Vol. 3 (eds. P. G. Ashmore and R. J. Donovan), The Chemical Society, London, pp. 1–41.

    Chapter  Google Scholar 

  • Fuss, W., Kompa, K. L., Proch, D., and Schmid, W. E., 1977, High power infrared laser chemistry, in Lasers in Chemistry (ed. M. A. West), Elsevier Publishing Co., Amsterdam, pp. 235–244.

    Google Scholar 

  • Garcia, D., and Keehn, P. M., 1978, Organic chemistry by infrared lasers. 2. Retro-Diels-Alder reactions, J. Am. Chem. Soc. 100:6111.

    Article  CAS  Google Scholar 

  • Glatt, I., and Yogev, A., 1976, Photochemistry in the electronic ground state. 4. Infrared laser induced isomerization of labeled compounds. A possible route for isotope separation, J. Am. Chem. Soc. 98:7087.

    Article  CAS  Google Scholar 

  • Grant, E. R., Schulz, P. A., Sudbe, Aa. S., Shen, Y. R., and Lee, Y. T., 1978, Is multiphoton dissociation of molecules a statistical thermal process?, Phys. Rev. Lett. 40:115.

    Article  CAS  Google Scholar 

  • Grunwald, E., Dever, D. F., and Keehn, P. M., 1978, Megawatt Infrared Laser Chemistry, John Wiley, New York.

    Google Scholar 

  • Grunwald, E., Lonzetta, C. M., and Popok, S., 1979, Intermolecular energy exchange of infrared-laser excited CHCIF2 or SiF4 with Br2 at excitation energies of 70–200 kJ/mol, J. Am. Chem. Soc. 101:5062.

    Article  CAS  Google Scholar 

  • Haas, Y., and Yahav, G., 1977, Gas phase unimolecular decomposition and chemiluminescence of tetramethyldioxetane initiated by a TEA CO2 laser, Chem. Phys. Lett. 48:63.

    Article  CAS  Google Scholar 

  • Hall, R. B., and Kaldor, A., 1979, Multiple IR photon laser induced reactions of cyclopropane, J. Chem. Phys. 70:4027.

    Article  CAS  Google Scholar 

  • Hassler, J. C., and Setser, D. W., 1966, RRKM calculated unimolecular reaction rates for chemically and thermally activated C2H5Cl, 1,1-C2H4Cl2, and 1,2-C2H4Cl2, J. Chem. Phys. 45: 3246.

    Article  CAS  Google Scholar 

  • Herman, I. P., and Marling, J. B., 1979, Vibrationally stimulated addition reactions between hydrogen halides and unsaturated hydrocarbons: A negative result, J. Chem. Phys. 71: 643.

    Article  CAS  Google Scholar 

  • Holmes, B. E., and Setser, D. W., 1975, Energy disposal in unimolecular reactions. Four-centered elimination of HCI, J. Phys. Chem. 79:1320.

    Article  CAS  Google Scholar 

  • Hovis, F. E., and Moore, C. B., 1980, Energy transfer and laser photochemistry, in press.

    Google Scholar 

  • Hsu, D. S. Y., and Manuccia, T. J., 1978, Deuterium enrichment by CW laser-induced reaction of methane, Appl. Phys. Lett. 33:915.

    Article  CAS  Google Scholar 

  • Hwang, W. C., Herrn, R. R., Kalsch, J. F., and Gust, G. R., 1979, Multiple-photon chemistry induced by a pulsed CO2 laser at moderate fluences, Aerospace Report No. ATR-79(8420)-1, May 1979.

    Google Scholar 

  • JANAF Thermochemical Tables, 1971, 2nd ed., U.S. Bureau of Standards, Publication NSRDS-NBS 37.

    Google Scholar 

  • Jang, J. C., and Setser, D. W., 1979, Collisional effects in infrared multiple photon induced unimolecular reactions of fluoroethane and trifluoroethane, J. Phys. Chem. 83:2809.

    Article  CAS  Google Scholar 

  • Jensen, C. C., Steinfeld, J. I., and Levine, R. D., 1978, Information theoretic analysis of multiphoton excitation and collisional deactivation in polyatomic molecules, J. Chem. Phys. 69:1432.

    Article  CAS  Google Scholar 

  • Johnson, R. L., and Setser, D. W., 1967, Unimolecular reactions of chemically activated C2H5Br, 1,2-C2H4Br2, and 1,2-C2H4BrC1 and the reaction of methylene with CH2Br2 and CH2BrCl, J. Phys. Chem. 71:4366.

    Article  CAS  Google Scholar 

  • Kaldor, A., Hall, R. B., Cox, D. M., Horsley, J. A., Rabinowitz, P., and Kramer, G. M., 1979, Infrared laser chemistry of large molecules, J. Am. Chem. Soc. 101:4465.

    Article  CAS  Google Scholar 

  • Kim, K. C., and Setser, D. W., 1974, Unimolecular reactions and energy partitioning. Three-and four-centered elimination reactions of chemically activated 1,1,2-trichloroethane-do, -d1, and -d2, J. Phys. Chem. 78:2166.

    Article  CAS  Google Scholar 

  • Knudtson, J. T., and Flynn, G., 1973, Laser fluorescence study of vibrational energy transfer in CH3C1*, J. Chem. Phys. 58:2684.

    Article  Google Scholar 

  • Kolodner, P., Winterfield, C., and Yablonovitch, E., 1977, Molecular dissociation of SF6 by ultra-short CO2 laser pulses, Optics Commun. 20:119.

    Article  CAS  Google Scholar 

  • Kompa, K. L., Fuss, W., Proch, D., Schmid, W. E., Smith, S. D., and Schröder, H., 1979, Towards an understanding of infrared multiphoton absorption and dissociation, in Nonlinear Behavior of Molecules, Atoms, and Ions in Electric, Magnetic, or Electromagnetic Fields, Elsevier Publishing Co., Amsterdam, pp. 55–63.

    Google Scholar 

  • Letokhov, V. S., and Moore, C. B., 1977, Laser isotope separation, in Chemical and Biochemical Applications of Lasers, Volume III (ed. C. B. Moore), Academic Press, New York, pp. 1–165.

    Google Scholar 

  • Lyman, J. L., 1977, A model for unimolecular reaction of sulfur hexafluoride, J. Chem. Phys. 69:1868.

    Article  Google Scholar 

  • Lyman, J. L., Danen, W. C., Nilsson, A. C., and Nowak, A. V., 1979, Multiple-photon excitation of difluoroamino sulfur pentafluoride: A study of absorption and dissociation, J. Chem. Phys. 71:1206.

    Article  CAS  Google Scholar 

  • Lussier, F. M., and Steinfeld, J. I., 1977, Multiple infrared photon dissociation of vinyl chloride, Chem. Phys. Lett. 50:175.

    Article  CAS  Google Scholar 

  • Marcoux, P. J., and Setser, D. W., 1978, Vibrational energy transfer probabilities of highly vibrationally excited 1,1,1-trifluoroethane, J. Phys. Chem. 82:97.

    Article  CAS  Google Scholar 

  • Mukamel, S., 1979, Stochastic reduction for molecular multiphoton processes, J. Chem. Phys. 70:5834.

    Article  CAS  Google Scholar 

  • Nikitin, E. E., 1974, Theory of elementary atomic and molecular processes in gases, Oxford University Press, London.

    Google Scholar 

  • Olszyna, K. J., Grunwald, E., Keehn, P. M., and Anderson, S. P., 1977, Megawatt infrared laser chemistry. II. Use of SiF4 as an inert sensitizer, Tetrahedron Lett. 1977:1609.

    Article  Google Scholar 

  • Plum, C. N., and Houston, P. L., 1980, Infrared photolysis of C2F4S2: A comparison of multiphoton dissociation models, Chem. Phys. 45:159.

    Article  CAS  Google Scholar 

  • Popok, S., Lonzetta, C. M., and Grunwald, E., 1979, Infrared laser induced bromination and chlorination of chlorodifluoromethane, J. Org. Chem. 44:2377.

    Article  CAS  Google Scholar 

  • Preses, J. M., Weston, R. E., Jr., and Flynn, G. W., 1977, Unimolecular decomposition of cyclo-C4H8 induced by a CO2 TEA laser, Chem. Phys. Lett. 46:69.

    Article  CAS  Google Scholar 

  • Pritchard, H. O., Pyke, J. B., and Trotman-Dickenson, A. F., 1955, The study of chlorine atom reactions in the gas phase, J. Am. Chem. Soc. 77:2629.

    Article  CAS  Google Scholar 

  • Quack, M., 1978, Theory of unimolecular reactions induced by the monochromatic infrared radiation, J. Chem. Phys. 69:1282.

    Article  CAS  Google Scholar 

  • Quack, M., and Troe, J., 1977, Unimolecular reactions and energy transfer of highly excited molecules, in Gas Kinetics and Energy Transfer, Vol. 2 (eds. P. G. Ashmore and R. J. Donovan), The Chemical Society, London, pp. 175–238.

    Chapter  Google Scholar 

  • Quick, Jr., C. R., and Wittig, C., 1978a, IR photodissociation of vinyl fluoride: time-resolved emission under collisionless conditions, Chem. Phys. 32:75.

    Article  CAS  Google Scholar 

  • Quick, Jr., C. R., and Wittig, C., 1978b, Infrared photodissociation of fluorinated ethanes and ethylenes: Collisional effects in the multiple photon absorption process, J. Chem. Phys. 69:4201.

    Article  CAS  Google Scholar 

  • Quick, Jr, C. R., Tiee, J. J., Fischer, T. A., and Wittig, C., 1979, A direct measurement of the unimolecular decomposition of 1,1-difluoroethane via IR laser photolysis, Chem. Phys. Lett. 62:435.

    Article  CAS  Google Scholar 

  • Reiser, C., Lussier, F. M., Jensen, C. C., and Steinfeld, J. I., 1979, Infrared photochemistry of halogenated ethylenes, J. Am. Chem. Soc. 101:350.

    Article  CAS  Google Scholar 

  • Richardson, T. H., and Setser, D. W., 1977, Laser induced decomposition of fluorethanes, J. Phys. Chem. 81:2301.

    Article  CAS  Google Scholar 

  • Robinson, P. J., 1975, Unimolecular reactions, in Reaction Kinetics, Vol. 1 (ed., P. G. Ashmore), The Chemical Society, London, pp. 93–160.

    Chapter  Google Scholar 

  • Robinson, P. J., and Holbrook, K. A., 1972, Unimolecular Reactions, Wiley-Interscience, New York.

    Google Scholar 

  • Ronn, A. M., 1979, Laser chemistry, Scientific American, 240 (5):114–128.

    Article  CAS  Google Scholar 

  • Rosenfeld, R. N, Brauman, J. I., Barker, J. R., and Golden, D. M., 1977, Infrared photo-decomposition of ethyl vinyl ether. A chemical probe of multiphoton dynamics, J. Am. Chem. Soc. 99:8063.

    Article  CAS  Google Scholar 

  • Ross, R. A., and Stimson, V. R., 1960, Catalysis by hydrogen halides in the gas phase. Part III. Isopropyl and hydrogen bromide, J. Chem. Soc., 3090.

    Google Scholar 

  • Schulz, P. A., Sudbe, Aa. S., Krajnovich, D. J., Kwok, H. S., Shen, Y. R., and Lee, Y. T., 1979, Multiphoton dissociation of polyatomic molecules, Ann. Rev. Phys. Chem., 30:379.

    Article  CAS  Google Scholar 

  • Schwartz, R. N., and Herzfeld, K. F., 1954, Vibrational relaxation times in gases (Three dimensional treatment), J. Chem. Phys. 22:767.

    Article  CAS  Google Scholar 

  • Schwartz, R. N., Slawsky, Z. I., and Herzfeld, K. F., 1952, Calculation of vibrational relaxation times in gases, J. Chem. Phys. 20:1591.

    Article  CAS  Google Scholar 

  • Shaub, W. M., and Bauer, S. H., 1975, Laser-powered homogeneous pyrolysis, Internat. J. Chem. Kinet. 7:509.

    Article  CAS  Google Scholar 

  • Shultz, M. J., and Yablonovitch, E., 1978, A statistical theory for collisionless multiphoton dissociation of SF6, J. Chem. Phys. 68:3007.

    Article  CAS  Google Scholar 

  • Steel, C., Starov, V., Leo, R., John, P., and Harrison, R. G., 1979, Chemical thermometers in megawatt infrared laser chemistry: The decomposition of cyclobutanone sensitized by ammonia, Chem. Phys. Lett. 62:121.

    Article  CAS  Google Scholar 

  • Stephensen, J. C, King, D. S., Goodman, M. F., and Stone, J., 1979, Experiment and theory for CO2 laser-induced CF2HCI decomposition rate dependence on pressure and intensity, J. Chem. Phys. 70:4496.

    Article  Google Scholar 

  • Stone, J., and Goodman, M. F., 1979, A re-examination of the use of rate equations to account for fluence dependence, intramolecular relaxation, and unimolecular decay in laser driven polyatomic molecules, J. Chem. Phys. 71:4068.

    Article  Google Scholar 

  • Sudbo, Aa. S., Schulz, P. A., Shen, Y. R., and Lee, Y. T., 1978, Three-and four-centered elimination of HCI in the multiphoton dissociation of halogenated hydrocarbons, J. Chem. Phys. 69:2312.

    Article  CAS  Google Scholar 

  • Sudbo, Aa. S., Schulz, P. A., Grant, E. R., Shen, Y. R., and Lee, Y. T., 1979, Simple bond rupture reactions in multiphoton dissociation of molecules, J. Chem. Phys. 70:912.

    Article  CAS  Google Scholar 

  • Tardy, D. C., and Rabinovitch, B. S., 1966, Collisional energy transfer. Thermal unimolecular systems in the low-pressure region, J. Chem. Phys. 45:3720.

    Article  CAS  Google Scholar 

  • Tardy, D. C., and Rabinovitch, B. S., 1977, Intermolecular vibrational energy transfer in thermal unimolecular systems, Chem. Revs. 77:369.

    Article  CAS  Google Scholar 

  • Taylor, R., 1975, The nature of the transition state in ester pyrolysis. Part II. The relative rates of pyrolysis of ethyl, isopropyl, and t-butyl acetates, phenylacetates, benzoates, phenyl carbonates, and N-phenylcarbomates, J. C. S. Perkin 11 1975:1025.

    Google Scholar 

  • Thiele, E., Goodman, M. F., and Stone, J., 1980, Can lasers be used to break chemical bonds selectively?, Opt. Eng. 19:10.

    CAS  Google Scholar 

  • Treanor, C. E., Rich, C. W., and Rehm, R. G., 1968, Vibrational relaxation of arharmonic oscillators with exchange-dominated collisions, J. Chem. Phys. 48:1798.

    Article  CAS  Google Scholar 

  • Tsang, W., Walker, J. A., Braun, W., and Herron, J. T., 1978, Mechanisms of decomposition of mixtures of ethyl acetate and isopropyl bromide subjected to pulsed infrared laser irradiation, Chem. Phys. Lett. 59:487.

    Article  CAS  Google Scholar 

  • Weitz, E., and Flynn, G., 1973a, Deactivation of laser excited CH3F in CH3F—X mixtures, J. Chem. Phys. 58:2679.

    Article  Google Scholar 

  • Weitz, E., and Flynn, G., 1973b, Partial Vibration energy transfer map for methyl fluoride: A laser fluorescence study, J. Chem. Phys. 58:2781.

    Article  Google Scholar 

  • Woodin, R. L., Bomse, D. S., and Beauchamp, J. L., 1978, Multiphoton dissociation of molecules with low power continuous wave infrared laser radiation, J. Am. Chem. Soc. 100:3248.

    Article  CAS  Google Scholar 

  • Woodin, R. L., Bomse, D. S., and Beauchamp, J. L., 1979, Multiphoton dissociation of molecules with low power CW infrared lasers: collisional enhancement of dissociation probabilities, Chem. Phys. Lett. 63:630.

    Article  CAS  Google Scholar 

  • Yahav, G., and Haas, Y., 1978, Time dependence of multiphoton dissociation of molecules in a strong infrared field. Real-time measurement using a nanosecond laser source, Chem. Phys. 35:41.

    Article  CAS  Google Scholar 

  • Yardley, J. T., and Moore, C. B., 1968, Vibrational energy transfer in methane, J. Chem. Phys. 49:1111.

    Article  CAS  Google Scholar 

  • Yogev, A., and Benmair, R. M. J., 1977, Photochemistry in the electron ground state. Quantitative electrocyclic isomerization induced by multiphoton absorption of infrared laser radiation, Chem. Phys. Lett. 46:290.

    Article  CAS  Google Scholar 

  • Yogev, A., and Loewenstein-Benmair, R. M. J., 1973, Photochemistry in the electronic ground state. II. Selective decomposition of trans-2-butene by pulsed carbon dioxide laser, J. Am. Chem. Soc. 95:8487.

    Article  CAS  Google Scholar 

  • Zittel, P. F., and Moore, C. B., 1973, Model for V-T, R relaxation: CH4 and CD4 mixtures, J. Chem. Phys. 58:2004.

    Article  CAS  Google Scholar 

  • Zitter, R. N., and Koster, D. F., 1976, Reaction rate difference in the laser excitation of different vibrational mode of CF3C1CF2C1, J. Am. Chem. Soc. 98:1613.

    Article  CAS  Google Scholar 

  • Zitter, R. N., and Koster, D. F., 1977, Frequency dependence of laser-initiated reaction rates of CF2C1CF2C1, J. Am. Chem. Soc. 99:5491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Danen, W.C., Jang, J.C. (1981). Multiphoton Infrared Excitation and Reaction of Organic Compounds. In: Steinfeld, J.I. (eds) Laser-Induced Chemical Processes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3863-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3863-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3865-9

  • Online ISBN: 978-1-4684-3863-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics