Skip to main content
Book cover

Serotonin pp 681–705Cite as

Studies on the Role of Central 5-HT Neurons in Avoidance Learning: A Behavioral and Biochemical Analysis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 133))

Abstract

The ascending 5-hydroxytryptamine (5-HT, serotonin) containing neurons first described by Fuxe et al.1, which originate in the midbrain raphe nuclei and have a widespread distribution in the forebrain2,3 have been implicated in avoidance learning and memory processes 4,5,6,7,8,9. Treatments known to modulate 5-HT neurotransmission have been found to alter the acquisition and performance of a wide range of aversively motivated behaviors10,11. Despite intensive research, however, the specific role of serotonin in aversive learning and memory processes is little understood. In recent years it has become increasingly clear that different methods used to manipulate 5-HT neurotransmission can produce highly variable effects on avoidance behavior in the rat even when the animals are tested in similar behavioral situations11,12,13. The available data suggest that the variations in avoidance behavior following 5-HT manipulation depend on both the tools employed to alter 5-HT neurotransmission and the behavioral situation used for testing the animals11. The same manipulation of central 5-HT has been shown to cause different effects on avoidance learning when the testing situation is varied. For example, systemic injection of pchlorophenylalanine (PCPA), a tryptophan hydroxylase inhibitor, has been reported to facilitate one-way avoidance acquisition6,7, but was recently shown not to significantly affect two-way active avoidance acquisition 12. On the other hand, electrolytic lesions of the midbrain raphe nuclei, which produce a marked reduction in forebrain 5-HT concentrations, but in contrast to PCPA do not affect peripheral 5-HT stores, have consistently been shown to facilitate two-way and to impair one-way avoidance acquisition 11,14. Thus, reduction of brain 5-HT concentrations can produce highly variable effects on avoidance learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Fuxe, Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system, Acta Physiol. Scand. 64 (Suppl. 247): 37 (1965).

    Google Scholar 

  2. C. C. Azmitia and M. Segal, An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat, J. Comp. Neurol. 179: 641 (1978).

    Article  PubMed  CAS  Google Scholar 

  3. S. A. Lorens and H. C. Guldberg, Regional 5-hydroxy- tryptamine following selective midbrain raphe lesions in the rat, Brain Res. 78: 45 (1974).

    Article  PubMed  CAS  Google Scholar 

  4. W. B. Essman, Some neurochemical correlates of altered memory consolidation, Trans. N.Y. Acad. Sci. 32: 948 (1970).

    Article  PubMed  CAS  Google Scholar 

  5. S. A. Lorens and L. M. Yunger, Morphine analgesia, two-way avoidance, and consummatory behaviour following lesions in the midbrain raphe of the rat, Pharmacol. Biochem. Behay. 2: 215 (1974).

    Article  CAS  Google Scholar 

  6. S. S. Tenen, The effects of p-chlorophenylalanine, a serotonin depletor, on avoidance acquisition, pain sensitivity and related behaviour in the rat, Psychopharmacologia 10: 204 (1967).

    Article  PubMed  CAS  Google Scholar 

  7. J. F. Brody, Jr., Behavioural effects of serotonin depletion and of p-chlorophenylalanine (a serotonin depletor) in rats, Psychopharmacologia 17: 14 (1970).

    Article  PubMed  CAS  Google Scholar 

  8. S. O. Ogren, Ch. Köhler, S. B. Ross, and B. Srebro, 5-hydroxytryptamine depletion and avoidance acquisition in the rat. Antagonism of the long-term effects of p-chloroamphetamine with a selective inhibitor of 5-hydroxytryptamine uptake, Neuroscience Letters 3: 341 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. A. V. Rake, Involvement of biogenic amines in memory formation: The central nervous system indole amine involvement, Psychopharmacologia 29: 91 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. R. B. Messing, D. J. Pettibone, N. Kaufman, and L.D. Lytle, Behavioural effects of serotonin neuro-toxins: An overview, in: “Serotonin neurotoxins,” J. H. Jacoby and L. 67-Lytle, The New York Academy of Sciences, New York (1978).

    Google Scholar 

  11. S. A. Lorens, Some behavioural effects of serotonin depletion depend on method: A comparison of 5,7dihydroxytryptamine, p-chlorophenylalanine, pchloroamphetamine, and electrolytic raphe lesions, in: “Serotonin neurotoxins,” J. H. Jacoby and L. D. Lytle, The New York Academy of Sciences, New York (1978).

    Google Scholar 

  12. Ch. Köhler and S. A. Lorens, Open field activity and avoidance behaviour following serotonin depletion: a comparison of the effects of parachlorophenylalanine and electrolytic midbrain raphe lesions, Pharmacol. Biochem. Behay. 8: 223 (1978).

    Article  Google Scholar 

  13. S. 0. Ogren and S. B. Ross, Effects of reduced cerebral serotonin on learning, Brain Res. 127: 379 (1977).

    Article  Google Scholar 

  14. B. Srebro and S. A. Lorens, Behavioural effects of selective midbrain raphe lesions in the rat, Brain Res. 89: 303 (1975).

    Article  PubMed  CAS  Google Scholar 

  15. H. G. Baumgarten and L. Lachenmayer, 5,7-Dihydroxytryptamine: improvement in chemical lesioning of indoleamine neurons in the mammalian brain, Z. Zellforsch. 135: 399 (1972).

    Article  CAS  Google Scholar 

  16. E. Sanders-Bush, J. A. Bushing, and F. Sulser, Longterm effects of p-chloroamphetamine on tryptophanhydroxylase activity and on the levels of 5-hydroxytryptamine and 5-hydroxyindole acetic acid in brain. Europ. J. Pharmacol. 20: 385 (1972).

    Article  CAS  Google Scholar 

  17. R. W. Fuller and B. B. Molloy, Recent studies with 4-chloroamphetamine and some analogues, in: “Advanc. Biochem. and Psychopharmacol., E. Costa, G. L. Gessa, and M. Sandler, Raven Press, New York (1974).

    Google Scholar 

  18. G. R. Breese and B. R. Cooper, Behavioural and biochemical interactions of 5,7-dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats, Brain Res. 98: 517 (1975).

    Article  PubMed  CAS  Google Scholar 

  19. K. Hole, K. Fuxe, and G. Jonsson, Behavioural effects of 5,7-dihydroxytryptamine lesions of ascending 5-hydroxytryptamine pathways, Brain Res. 107: 385 (1976).

    Article  PubMed  CAS  Google Scholar 

  20. K. Fuxe, S. O. Ogren, L. F. Agnati, G. Jonsson, and J. A. Gustafsson, 5,7-Dihydroxytryptamine as a tool to study the functional role of central 5hydroxytryptamine neurons, in: “Serotonin neuro-toxins,” J. H. Jacoby and L7-D. Lytle, , The New York Academy of Sciences, New York (1978).

    Google Scholar 

  21. S. A. Lorens, H. C. Guldberg, K. Hole, Ch. Köhler, and B. Srebro, Activity, avoidance learning and regional 5-hydroxytryptamine following intrabrainstem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat, Brain Res. 108: 97 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. A. Björklund, H. G. Baumgarten, and H. G. Rensch, 5,7-Dihydroxytryptamine: improvement of its selectivity for serotonin neurons in the CNS by pretreatment with desipramine, J. Neurochem. 24: 833 (1975).

    PubMed  Google Scholar 

  23. S. O. Ogren, S. B. Ross, and L. Baumann, 5-Hydroxytryptamine and learning: long-term effects of p-chloroamphetamine on acquisition, Med. Biol. 53: 165 (1975).

    CAS  Google Scholar 

  24. S. O. Ogren, S. B. Ross, A. C. Holm, and L. Baumann, 5-Hydroxytryptamine and avoidance performance in the rat. Antagonism of the acute effect of pchloroamphetamine by zimelidine, an inhibitor of 5-hydroxytryptamine uptake. Neuroscience Letters 3: 331 (1977).

    Google Scholar 

  25. J. A. Harvey, S. E. McMaster, and L. M. Yunger, p-Chloroamphetamine: selective neurotoxic action in brain, Science 187: 841 (1975).

    Article  PubMed  CAS  Google Scholar 

  26. Ch. Köhler, S. B. Ross, B. Srebro, and S. O. Ogren, Long-term biochemical and behavioural effects of p-chloroamphetamine in the rat, in: “Serotonin neurotoxins,” J. H. Jacoby and L. D. Lytle, , The New York Academy of Sciences, New York (1978).

    Google Scholar 

  27. S. B. Ross, Antagonism of the acute and long-term biochemical effects of 4-chloroamphetamine on the 5-HT neurons in the rat brain by inhibitors of the 5-hydroxytryptamine uptake, Acta Pharmacol. Toxicol. 39: 456 (1976).

    CAS  Google Scholar 

  28. S. 0. Ogren and S. B. Ross, Substituted amphetamine derivatives. II. Behavioural effects in mice related to monoaminergic neurons, Acta Pharmacol. Toxicol. 41: 353 (1977)

    Article  CAS  Google Scholar 

  29. M. E. Trulson and B. L. Jacobs, Behavioural evidence for the rapid release of CNS serotonin by PCA and fenfluramine, Eur. J. Pharmacol. 36: 149 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. C. A. Marsden, J. Conti, E. Strope, G. Curzon, and R. N. Adams, Monitoring 5-hydroxytryptamine release in the brain of the freely moving unanaesthetized rat using in vivo voltammetry, Brain Res. 171: 85 (1979).

    Article  PubMed  CAS  Google Scholar 

  31. E. Sanders-Bush and L. R. Steranka, Immediate and long-term effects of p-chloroamphetamine on brain amines in: “Serotonin neurotoxins,” J. H. Jacoby and L. D. Lytle, , The New York Academy of Sciences (1978).

    Google Scholar 

  32. S. B. Ross, S. 0. Ogren, and A. L. Renyi, (Z)-Dimethylamino- 1-(4-bromophenyl)-1-(3-pyridyl)propene (H 102/091, a new selective inhibitor of the neuronal 5-hydroxytryptamine uptake, Acta Pharmacol. Toxicol. 39: 152 (1976).

    CAS  Google Scholar 

  33. C. Atack and T. Magnusson, A procedure for the isolation of noradrenaline (together with adrenaline), dopamine, 5-hydroxytryptamine and histamine from the same tissue sample using a single column of strongly acidic cation exchange resin, Acta Pharmacol. Toxicol. 42: 35 (1978).

    CAS  Google Scholar 

  34. O. H. Lowry, N. J. Rosebrough, A. Farr, and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265 (1951).

    PubMed  CAS  Google Scholar 

  35. J. P. Bennett and S. H. Snyder, Serotonin and lysergic acid diethylamide binding in rat brain membranes: relationship to postsynaptic serotonin receptors, Mol. Pharmacol. 12: 373 (1976).

    CAS  Google Scholar 

  36. H. Hall, and L. Thor, Evaluation of a semiautomatic filtration technique for receptor binding studies, Life Sci. 24: 2293 (1979).

    Article  PubMed  CAS  Google Scholar 

  37. R. M. Stewart, J. H. Growdon, D. Cancian, and R. J. Baldessarini, 5-Hydroxytryptophan induced myoclonus: increased sensitivity to serotonin after intracranial 5,7-dihydroxytryptamine in the adult rat, Neuropharmacol. 15: 449 (1976).

    Article  CAS  Google Scholar 

  38. D. L. Nelson, A. Herbet, S. Bourgoin, J. Glowinski, and M. Hamon, Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5,7-dihydroxytryptamine administra- tion in the rat, Mol. Pharmacol. 14: 983 (1978).

    CAS  Google Scholar 

  39. S., O. ögren, and K. Fuxe, On the role of brain nor-adrenaline and the pituitary adrenal axis in learning. I. Studies with corticosterone, Neuroscience Letters 5: 291 (1977).

    Article  PubMed  Google Scholar 

  40. S., T. Mason, and H. C. Fibiger, Noradrenaline and avoidance learning in the rat, Brain Res. 161: 321 (1979).

    Article  PubMed  CAS  Google Scholar 

  41. H., C. Fibiger, and B. A. Campbell, The effect of para-chlorophenylalanine on spontaneous locomotor activity in the rat, Neuropharmacol. 10: 25 (1971).

    Article  CAS  Google Scholar 

  42. A., H. Black, L. Nadel, and J. O’Keefe, Hippocampal function in avoidance learning and punishment, Psychological Bulletin 84: 1107 (1977).

    Article  PubMed  CAS  Google Scholar 

  43. D., A. V. Peters, H. Anisman, and B. A. Pappas, Monoamines and aversively motivated behaviours, in: “Psychopharmacology of aversively motivated behaviour,” H. Anisman and G. Bignami, , Springer Science+Business Media New York (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Ögren, S.O., Fuxe, K., Archer, T., Hall, H., Holm, AC., Köhler, C. (1981). Studies on the Role of Central 5-HT Neurons in Avoidance Learning: A Behavioral and Biochemical Analysis. In: Haber, B., Gabay, S., Issidorides, M.R., Alivisatos, S.G.A. (eds) Serotonin. Advances in Experimental Medicine and Biology, vol 133. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3860-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3860-4_37

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3862-8

  • Online ISBN: 978-1-4684-3860-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics