Skip to main content

A Survey of Electromagnetic Methods of Nondestructive Testing

  • Chapter
Mechanics of Nondestructive Testing

Summary

Electromagnetic methods of nondestructive testing (NDT) can be classified according to their mode of specimen excitation:

  • Direct current excitation results in active leakage fields around defects in ferromagnetic materials.

  • Residual leakage fields around defects in ferromagnetic materials occur after removal of the dc excitation current.

  • Alternating current excitation of conducting materials results in induced eddy currents which are sensitive to a wide variety of specimen properties.

All of these techniques, when used in conjunction with an appropriate test probe, can be applied to the problems of testing metals nondestructively. Each technique has its own particular field of application and many are used on a daily basis in the energy, transportation and aerospace industries. The classification covers not only a broad frequency spectrum (from 0Hz into the MHz range) but also a large number of individual testing techniques associated with each sub group.

Despite the longevity of the subject matter, industry’s demands for better performance and reliability from metal components have caused increased interest in improving the state of the NDT art. This has resulted in a growing number of studies into the modeling of basic electromagnetic field/defect interactions and into techniques for improving the evaluation of test signals.

The major objective of this paper is to provide a survey of the topic by describing both practical and theoretical developments to-date and indicating current and future trends, thus characterizing the general philosophy of the field. An extensive bibliography is included with the paper which should enable the reader to obtain further in-depth information concerning most aspects of electromagnetic NDT techniques, and which also serves to indicate the general resurgence of interest in the field.

This work has been supported in part by the Colorado Energy Research Institute, the Army Research Office and the Electric Power Research Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Hughes, Induction Balance and Experimental Researches Therewith, Phil. Mag., 8:50 (1879).

    Google Scholar 

  2. W. Lord and D. J. Oswald, Leakage Field Methods of Defect Detection, Int. J. NDT, 4:249 (1972).

    Google Scholar 

  3. R. C. McMaster, “Nondestructive Testing Handbook,” Vol. II, ASNT, Columbus (1959).

    Google Scholar 

  4. W. J. McGonnagle, “Nondestructive Testing,” Gordon and Breach, New York (1961).

    Google Scholar 

  5. J. Lankford and P. H. Francis, Magnetic Field Perturbation Due to Metallurgical Defects, Int. J. NDT, 3:77 (1971).

    CAS  Google Scholar 

  6. T. Shiraiwa, T. Hiroshima and S. Morishima, An Automatic Magnetic Inspection Method Using Magnetoresistive Elements and its Application, Mat. Eval., 31:90 (1973).

    Google Scholar 

  7. K. C. Bakhaus, Magnetic Field Measurements as Related to Industrial NDT Applications, Mat. Eval., 33:232 (1975).

    Google Scholar 

  8. P. A. Khalileev and P. A. Grigorev, Method of Testing the Condition of Underground Pipes in Main Pipelines, Defektoskopiya, 4:79 (1974).

    Google Scholar 

  9. W. Stumm, Magnetic Stray Flux Measurement for Testing Welded Tubes On-Line, Non-Destructive Testing, Feb:3 (1976).

    Google Scholar 

  10. F. Förster, “The Automatic Detection of Flaws and Marking of Flaws by the Magnetographic Method,” Förster Inst. Reutlingen (1964).

    Google Scholar 

  11. D. E. Lorenzi, et al., Classifying Seam Depths in Steel Billets by the Magnetic Tape Method, Mat. Eval., 27:238 (1969).

    Google Scholar 

  12. Y. B. Feshchenko, The Prospects of Magnetographic Defectoscopy of Rolled Iron, Defektoskopiya, 2:5 (1971).

    Google Scholar 

  13. M. S. Gieskieng, “Method and Apparatus for the Detection of Cracks and Flaws in Rail Wheels and the Like by Sliding a Prerecorded Magnetic Medium over the Test Piece,” United States Patent 3,820,016, June 25, 1974.

    Google Scholar 

  14. W. Lord, Magnetic Flux Leakage for Measurement of Crevice Gap Clearance and Tube Support Plate Inspection, in: EPRI Special Report — Nondestructive Evaluation Program: Progress in 1979, EPRI, Palo Alto (1979).

    Google Scholar 

  15. N. Davis, Magnetic Flux Analysis Techniques, in: “Research Techniques in Nondestructive Testing,” R. S. Sharpe, ed., Academic Press, New York (1973).

    Google Scholar 

  16. V. A. Burganova, et al., Electromagnetic Testing of the Microstructure and Mechanical Properties of Cold-Deformed Tubes, Defektoskopiya, 2:46 (1972).

    Google Scholar 

  17. S. Titto, et al., Non-destructive Magnetic Measurement of Steel Grain Size, Non-Destructive Testing, June:117 (1976).

    Google Scholar 

  18. V. K. Barsukov, et al., Inspection of Ferromagnetic Material Parameters by the Magnetic Noise Method, Defektoskopiya, 6:117 (1973).

    Google Scholar 

  19. G. A. Matzkanin, et al., “The Barkhausen Effect and its Applications to Nondestructive Evaluation,” NTIAC-79–2, SRI, San Antonio, (1979).

    Google Scholar 

  20. N. S. Savorovskii, et al., Contactless System for Transverse Magnetization of Tubes, Defektoskopiya, 2:23 (1970).

    Google Scholar 

  21. W. Lord and D. J. Oswald, The Generated Reaction Field Method of Detecting Defects in Steel Bars, Mat. Eval., 29:21 (1971).

    Google Scholar 

  22. F. Förster, Non-destructive Inspection of Tubing and Round Billets by means of Leakage Flux Probes, Brit. J. NDT, 19:26 (1977).

    Google Scholar 

  23. R. E. Beissner, “An Investigation of Flux Density Determinations,” AFML Final Report TR-76–236, SRI, San Antonio, (1976).

    Google Scholar 

  24. I. I. Kifer and I. B. Semenouskaya, New Magnetic Particle Methods of Inspection, Defektoskopiya, 2:41 (1972).

    Google Scholar 

  25. W. Lord, et al., Residual and Active Leakage Fields Around Defects in Ferromagnetic Materials, Mat. Eval., 36:47 (1978).

    Google Scholar 

  26. G. M. Massa, Finding the Optimum Conditions for Weld Testing by Magnetic Particles, Non-Destructive Testing, Feb:16 (1976).

    Google Scholar 

  27. D. A. Shturkin, Magnetization of Components with Difficult Shapes for Flaw Detection Purposes, Defektoskopiya, 4:63 (1976).

    Google Scholar 

  28. H. L. Libby, “Introduction to Electromagnetic Nondestructive Test Methods,” Wiley-Interscience, New York (1971).

    Google Scholar 

  29. R. Hochschild, Electromagnetic Methods of Testing Metals, in: “Progress in Non-Destructive Testing,” E. G. Stanford, et al., Ed., Macmillan Company, Inc., New York (1959).

    Google Scholar 

  30. J. R. Wait, Review of Electromagnetic Methods in Nondestructive Testing of Wire Ropes, Proc. IEEE, 67:892 (1979).

    Article  Google Scholar 

  31. V. S. Cecco and C. R. Box, Eddy Current in-situ Inspection of Ferromagnetic Monel Tubes, Mat. Eval., 33:1 (1975).

    Google Scholar 

  32. C. V. Dodd and W. A. Simpson, Thickness Measurements Using Eddy Current Techniques, Mat. Eval., 31:73 (1973).

    Google Scholar 

  33. C. V. Dodd, et al., “Eddy Current Evaluation of Nuclear Control Rods,” Mat. Eval., 32:93 (1974).

    CAS  Google Scholar 

  34. H. L. Libby, Eddy Current Test for Tubing Flaws in Support Regions, in: “Research Techniques in Nondestructive Testing,” R. S. Sharpe, Ed., Academic Press, New York (1973).

    Google Scholar 

  35. A. J. Bahr, Quantitative Measurement of Crack Parameters using Microwave Eddy Current Technqiues, in: Proceedings of the ARPA/AFML Review of Progress in Quantitative NDE, AFML-TR-78–205 (1979).

    Google Scholar 

  36. D. S. Dean and L. A. Kerridge, Microwave Techniques, “Research Techniques in Nondestructive Testing,” R. S. Sharpe, Ed. Academic Press, New York (1970).

    Google Scholar 

  37. D. L. Waidelich, Pulsed Eddy Currents, ibid.

    Google Scholar 

  38. N. N. Zatsepin and V. E. Shcherbinin, Calculation of the Magnetostatic Field of Surface Defects, I. Field Topography of Defect Models, Defektoskopiya, 5:50 (1966).

    Google Scholar 

  39. V. E. Shcherbinin and N. N. Zatsepin, Calculation of the Magnetostatic Field of Surface Defects, II. Experimental Verification of the Principal Theoretical Relationships, Defektoskopiya, 5:59 (1966).

    Google Scholar 

  40. V. E. Shcherbinin and A. I. Pashagin, Influence of the Extension of a Defect on the Magnitude of Its Magnetic Field, Defektoskopiya, 4:74 (1972).

    Google Scholar 

  41. I. A. Novikova and N. V. Miroshin, Investigation of the Fields of Artificial Open Flaws in a uniform Constant Magnetic Field, Defektoskopiya, 4:95 (1973).

    Google Scholar 

  42. G. A. Burtsev and E. E. Fedorishcheva, Simple Approximation for the Magnetostatic Fields of Surface Defects and Inhomogeneities, Defektoskopiya, 2:111 (1974).

    Google Scholar 

  43. V. E. Shcherbinin and A. I. Pashagin, Polarization of Cracks in Nonuniformly Magnetized Parts, Defektoskopiya, 3:17 (1974).

    Google Scholar 

  44. V. E. Shcherbinin and A. I. Pashagin, On the Volume Polarization of Cracks, Defektoskopiya, 4:106 (1974).

    Google Scholar 

  45. B. I. Kolodii and A. Y. Teterko, Determination of the Transverse Magnetostatic Field of a Cylinder with an Eccentric Cylindrical Inclusion, Defektoskopiya, 3:44 (1976).

    Google Scholar 

  46. R. Hochshild, Electromagnetic Methods of Testing Metals, in: “Progress in Non-Destructive Testing,” E. G. Stanford, et al., Ed., Macmillan Company, Inc., New York (1959).

    Google Scholar 

  47. P. Graneau and S. A. Swann, Electromagnetic Fault Detection in Non-ferrous Pipes, J. Electronics and Control, 8:127 (1960).

    Article  Google Scholar 

  48. J. Vine, Impedance of a Coil Placed Near to a Conducting Sheet, J. Electronics and Control, 16:569 (1964).

    Article  Google Scholar 

  49. D.H.S. Cheng, The Reflected Impedance of a Circular Coil in the Proximity of a Semi-Infinite Medium, IEEE Trans. IM, 14:107 (1965).

    Google Scholar 

  50. C. V. Dodd, “Solutions to Electromagnetic Induction Problems,” Ph.D. Dissertation, University of Tennessee (1967).

    Google Scholar 

  51. C. V. Dodd, W. E. Deeds and J. W. Luquire, Integral Solutions to Some Eddy Current Problems, Int. J. NDT, 1:29 (1969).

    Google Scholar 

  52. C. V. Dodd, The Use of Computer Modeling for Eddy Current Inspection, in: “Research Techniques in Nondestructive Testing,” R. S. Sharpe, Ed., Academic Press, New York (1977).

    Google Scholar 

  53. M. Burrows, “Theory of Eddy Current Flaw Detection,” Ph.D. Thesis, University of Michigan (1964).

    Google Scholar 

  54. D. A. Hill and J. R. Wait, Scattering by a Slender Void in a Homogeneous Conducting Wire Rope, Appl. Phys., 16:391 (1978).

    Article  Google Scholar 

  55. A. H. Kahn, R. Spal and A. Feldman, Eddy-current Losses due to a Surface Crack in Conducting Material, J. Appl. Phys., 48:4454 (1977).

    Article  Google Scholar 

  56. W. Lord and R. Palanisamy, Development of Theoretical Models for NDT Eddy Current Phenomena, to appear in the ASTM Journal.

    Google Scholar 

  57. A. M. Winslow, Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh, J. Comp Phys., 2:149 (1967).

    Google Scholar 

  58. P. Silvester and M.V.K. Chari, Finite Element Solution of Saturable Magnetic Field Problems, IEEE Trans. PAS., 89:1642 (1970).

    Google Scholar 

  59. O. W. Anderson, Transformer Leakage Flux Program Based on the Finite Element Method, IEEE Trans. PAS., 92:682 (1973).

    Google Scholar 

  60. M.V.K. Chari, Finite Element Solution of the Eddy Current Problem in Magnetic Structures, IEEE Trans. PAS., 93:62 (1974).

    CAS  Google Scholar 

  61. J. H. Hwang and W. Lord, Finite Element Analysis of the Magnetic Field Distribution Inside a Rotating Ferromagnetic Bar, IEEE Trans. MAG., 10:1113 (1974).

    Article  Google Scholar 

  62. T. Sato, et al., Calculation of Magnetic Field Taking into Account Eddy Current and Nonlinear Magnetism, Elec. Eng. in Japan, 96:96 (1976).

    Article  Google Scholar 

  63. M.V.K. Chari and Z. J. Csendes, Finite Element Analysis of the Skin Effect in Current Carrying Conductors, IEEE Trans. MAG., 13:1125 (1977).

    Article  Google Scholar 

  64. N. A. Demerdash and T. W. Nehl, An Evaluation of the Methods of Finite Elements and Finite Differences in the Solution of Nonlinear Electromagnetic Fields in Electrical Machines, IEEE Trans. PAS., 98:74 (1979).

    Google Scholar 

  65. J. Donea, et. al., Finite Elements in the Solution of Electromagnetic Induction Problems, Int. J. Numerical Methods in Eng., 8:359 (1974).

    Article  Google Scholar 

  66. W. Lord and J. H. Hwang, Finite Element Modeling of Magnetic Field/Defect Interactions, ASTM J. Testing and Eval., 3:21 (1975).

    Article  Google Scholar 

  67. W. Lord and J. H. Hwang, Defect Characterization from Magnetic Leakage Fields, Brit. J. NDT, 19:14 (1977).

    Google Scholar 

  68. T. G. Kincaid and M.V.K. Chari, The Application of Finite Element Method Analysis to Eddy Current NDT, Proc. of the ARPA/AFML Review of Progress in Quantitative NDE, LaJolla (1978).

    Google Scholar 

  69. R. Palanisamy and W. Lord, Finite Element Analysis of Axisymmetric Geometries in Quantitative NDE, Proc. of the ARPA/AFML Review of Progress in Quantitative NDE, LaJolla (1979).

    Google Scholar 

  70. R. Palanisamy and W. Lord, Finite Element Modeling of Electromagnetic NDT Phenomena, IEEE Trans. MAG., 15:1479 (1979).

    Article  Google Scholar 

  71. H. T. Minden and M. F. Leonard, A Micron-size Hall Probe for Precision Magnetic Field Mapping, J. Appl. Phys., 50:2945 (1979).

    Article  CAS  Google Scholar 

  72. A. W. Baird, et al., High Resolution Field Measurements Near Ferrite Recording Heads, IEEE Trans. MAG., 15:1631 (1979).

    Article  Google Scholar 

  73. O. C. Zienkiewicz, et al., Three-Dimensional Magnetic Field Determination Using Scalar Potential — A Finite Element Solution, IEEE Trans. MAG., 13:1649 (1977).

    Article  Google Scholar 

  74. E. Guancial and S. Das Gupta, Three-Dimensional Finite Element Problems, IEEE Trans. MAG., 13:1012 (1977).

    Article  Google Scholar 

  75. . C. J. Carpenter, Comparison of Alternative Formulations of 3-Dimensional Magnetic Field and Eddy Current Problems at Power Frequencies, Proc. IEE., 124:1026 (1977).

    Google Scholar 

  76. T. W. Preston and A.B.J. Reece, Finite Element Solution of 3-Dimensional Eddy Current Problems in Electrical Machines, Proc. of the COMPUMAG Conference, Grenoble (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Lord, W. (1980). A Survey of Electromagnetic Methods of Nondestructive Testing. In: Stinchcomb, W.W., Duke, J.C., Henneke, E.G., Reifsnider, K.L. (eds) Mechanics of Nondestructive Testing. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3857-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3857-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3859-8

  • Online ISBN: 978-1-4684-3857-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics