Skip to main content

Part of the book series: Advances in Nuclear Science & Technology ((ANST))

Abstract

When canisters filled with radwastes are emplaced in a deep bedded salt repository the heat produced by the decaying waste will cause high temperatures and moderate thermal gradients to develop in the salt. The temperature and thermal gradient may be sufficient to cause the brine inclusions present to migrate towards the canister. The larger inclusions of SALT VAULT (1) were shown to migrate readily toward the emplacement hole while the very small ones were either unable to migrate or migrated very small distances (2). The rate of droplet migration can be limited either by ion diffusion through the liquid droplet or by the kinetics of ion removal from or deposition on the facets of the droplets. When the diffusivity and solubility of the solid in the liquid are large, the kinetic processes at the solid-liquid interface control the overall droplet velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Bradshaw and W. C. McClain, Project Salt Vault: A Demonstration of High Activity Waste in Underground Salt Mines ORNL-4555 (1971).

    Google Scholar 

  2. K. A. Holdoway, “Behavior of Fluid Inclusions in Salt During Heating and Irradiation,” Fourth Symposium on Salt Vol. 1 (A. H. Coogan, ed., Northern Ohio Geol. Soc., Clevelandt1974)

    Google Scholar 

  3. D. Elwell and H. J. Scheel, Crystal Growth from High-Temperature Solutions ( Academic Press, NY 1975 ).

    Google Scholar 

  4. W. J. Moore, Physical Chemistry ( 4th Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ, 1972 ).

    Google Scholar 

  5. D. G. Miller, Lawrence Livermore Laboratory, Livermore, CA (private communication).

    Google Scholar 

  6. P. Hoekstra, T. E. Osterkamp and W. F. Weeks, “The Migration of Liquid Inclusions in Single Ice Crystals,” J. Geophys. Res. 70, 2180 (1966).

    Google Scholar 

  7. G. H. Jenks, Effects of Temperature, Temperature Gradients, Stress and Irradiation on Migration of Brine Inclusions in a Salt Repository ORNL-5526, (1979).

    Google Scholar 

  8. W. R. Gambill, “Seven Answers from One Chart - Physical Properties of Water, ” Chem. Eng., 139 (1959).

    Google Scholar 

  9. W. Unterberg, “Thermal Properties of Salt Solutions,” Brit. Chem. Eng. 11, 494 (1966).

    Google Scholar 

  10. W. R. Wilcox, “Removing Inclusions from Crystals by Gradient Techniques,” Ind. and Eng. Chem. 60, 13 (1968).

    Google Scholar 

  11. T. R. Anthony and H. E. Cline, “Thermal Migration of Liquid Droplets Through Solids,” J. Appl. Phys. 42, 3380 (1971).

    Article  Google Scholar 

  12. T. R. Anthony and H. E. Cline, “The Kinetics of Droplet Migration in Solids in an Accelerational Field,” Phil. Mag. 22, 893 (1970).

    Google Scholar 

  13. T. R. Anthony and H. E. Cline, “The Interaction of Liquid Droplets with a Grain Boundary in Large Accelerational Fields,” Phil. Mag. 24, 695 (1971).

    Article  CAS  Google Scholar 

  14. H. E. Cline and T. R. Anthony, “The Thermomigration of Liquid Droplets Through Grain Boundaries in Solids, ” Acta Metall. 19, 491 (1971).

    Article  CAS  Google Scholar 

  15. H. E. Cline and T. R. Anthony, “The Shape Relaxation of Liquid Droplets in Solids, ” Acta Metall. 19, 175 (1971).

    Article  CAS  Google Scholar 

  16. T. R. Anthony and H. E. Cline, Acta Metall. 20, 247 (1972).

    Article  CAS  Google Scholar 

  17. T. R. Anthony and H. E. Cline, “The Stability of Migrating Droplets in Solids,” Acta Metall. 21, 117 (1973).

    Article  CAS  Google Scholar 

  18. H. E. Cline and T. R. Anthony, “Effects of the Magnitude and Crystallographic Direction of a Thermal Gradient on Droplet Migration in Solids,” J. Appl. Phys. 43, 10 (1972).

    Article  CAS  Google Scholar 

  19. T. J. Altenbach, Interim Report on Nuclear Waste Depository Thermal Analysis LLL, UCID-17865, 25 July (1978).

    Google Scholar 

  20. G. D. Duckworth and M. E. Fuller, BRINE-A Computer Program for Brine Migration LLL (in press).

    Google Scholar 

  21. J. Schott, “Sur la Mesure des Coefficients de Soret par la Méthode Thermogravitationnelle,” Compt. Rend. Acad. Sci. Paris, Series C 276, 459 (1972).

    Google Scholar 

  22. L. G. Longsworth, “The Temperature Dependence of the Soret Coefficient of Aqueous Potassium Chloride,” J. Phys. Chem. 61, 1557 (1957).

    Article  CAS  Google Scholar 

  23. R. L. Bradshaw and F. Sanchez, “Migration of Brine Cavities in Rock Salt,” J. Geophys. Res. 74, 4209–4212 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cheung, H., Fuller, M.E., Gaffney, E.G. (1980). Modeling of Brine Migration in Halite. In: Northrup, C.J.M. (eds) Scientific Basis for Nuclear Waste Management. Advances in Nuclear Science & Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3839-0_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3839-0_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3841-3

  • Online ISBN: 978-1-4684-3839-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics