Skip to main content

Time Reversal in Dissipative Systems

  • Chapter
Symmetries in Science

Abstract

An explicit formulation of the time reversal operator K with the property

$$K{\text{ }}q{\text{ }}{K^{ - 1}}{\text{ = q; }}K{\text{ }}p{\text{ }}{K^{ - 1}}{\text{ = - p; K }}\vec \sigma {\text{ }}{{\text{K}}^{{\text{ - 1}}}}{\text{ = - }}\vec \sigma $$
(1.1)

that it preserve the sign of the position operator q, and reverse the signs of the momentum operator p and the spin \(\vec{\sigma }\) was made by Wigner (1932, 1959).1

Work at CCNY supported in part by the Army Research Office and by a grant from the City University of New York PSC-BHE Research Award Program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wigner, E. P. (1932), “The Time Reversal Operation in Quantum Mechanics,” Nachr. Ges. Wiss. Gottingen Math-Phys. Klasse (546–559).

    Google Scholar 

  2. Wigner, E. P. (1959) Group Theory and Its Applications to Quantum Mechanics of Atomic Spectra, Academic Press.

    Google Scholar 

  3. Lax, M. (1962), “The Influence of Time Reversal On Selection Rules Connecting Different Points in the Brillouin Zone”. Pp. 395–402 of Proceedings of International Conference on Physics of Semiconductors, Institute of Physics and Physical Society, London.

    Google Scholar 

  4. Lax, M. (1965), “Subgroup Techniques in Crystal and Molecular Physics”, Phys. Rev. 138, A793 - A802.

    Article  MathSciNet  ADS  Google Scholar 

  5. Lax, M. (1974), Symmetry Principles in Solid State and Molecular Physics, Wiley.

    Google Scholar 

  6. Onsager, Lars (1931), “Reciprocal Relations in Irreversible Processes”, Phys. Rev. 37, (405–426); 38, (2265–2279).

    Google Scholar 

  7. Lax, M. (1966), Classical Noise III: “Nonlinear Markoff Processes”, Revs. Modern Physics 38, 359–379 hereafter referred to as I II.

    Google Scholar 

  8. Lax, M. (1968), “Fluctuation and Coherence Phenomena” 1966 Brandeis Summer Institute in Theoretical Physics, in Statistical Physics, Phase Transitions and Superfluidity, Vol. 2, edited by M. Chretien, E. P. Gross and S. Deser, Gordon and Breach, pp. 269–478.

    Google Scholar 

  9. Graham, R. and Haken, H. (1971), “Generalized Thermodynamic Potential for Markoff Systems in Detailed Balance and Far from Thermal Equilibrium”, Z. Physik 243, 289–302.

    Article  MathSciNet  ADS  Google Scholar 

  10. Risken, H. (1972), “Solutions of the Fokker-Planck Equation in Detailed Balance”, Z. Physik 251, 231–243.

    Article  ADS  Google Scholar 

  11. Lax, M. and Zwanziger, M. (1973), “Exact Photocount Statistics: Lasers Near Threshold”, Phys. Rev. A7, 750–771. See Appendix A.

    Google Scholar 

  12. Pawula, R. F. (1967), “Approximation of the Linear Boltzmann Equation by the Fokker-Planck Equation”, Phys. Rev. 162, 186–188.

    Google Scholar 

  13. Morse, P. M. and Feshbach, H. (1953), Methods of Theoretical Physics, McGraw-Hill.

    Google Scholar 

  14. Lax, M. and Louisell, W. H. (1967), “Quantum Noise IX: Quantum Fokker-Planck Solution For Laser Noise”. IEEE J. Quant. Electronics QE-3, 47–58 Appendix A.

    Google Scholar 

  15. Haken, H. (1970), “Laser Theory” Encyclopedia of Physics vol. XXV/2C, Springer, Berlin.

    Google Scholar 

  16. Risken, H. (1970), “Statistical Properties of Laser Light” In Progress in Optics Vol. VIII, pp. 239–294, ed. E. Wolf, North Holland, Amsterdam.

    Google Scholar 

  17. Risken, H. and Vollmer, H. D. (1967), “Correlation Function of the Amplitude and of the Intensity Fluctuation Near Threshold”, Z. Physik 191, 301–312.

    Google Scholar 

  18. Hempstead, R. D. and Lax, M. (1967), Classical Noise VI, Noise in Self-Sustained Oscillators Near Threshold“, Phys. Rev. 161, 350–366.

    Google Scholar 

  19. Stratanovich, R. L. (1963), “Topics in the theory of Random Noise”, Vol. 1, pp. 78, 79, Gordon and Breach.

    Google Scholar 

  20. Gamo, H., Grace, R. E. and Walter, T. J. (1968), “Statistical Analysis of Intensity Fluctuations in Single Mode Laser Radiation near the Oscillation Threshold”, IEEE J. Quantum Electron, QE-4, 344.

    Google Scholar 

  21. Davidson, F. and Mandel, L. (1967), “Correlation Measurements of Laser Beam Fluctuations Near Threshold”, Phys. Lett. A25, 700–701.

    Google Scholar 

  22. Arecchi, F. T., Rodari, G. S., and Sona, A. (1967), “Statistics of The Laser Radiation At Threshold”, Phys. Lett. A25, 59–60.

    Google Scholar 

  23. Arecchi, F. T., Giglio, M. and Sona, A. (1967), “Dynamics of the Laser Radiation At Threshold”, Phys. Lett. A25, 341–342.

    Google Scholar 

  24. Lax, M. (1966b), Tokyo Summer Lectures in Theoretical Physics, Part I Dynamical Process in Solid State Optics, edited by R. Kubo and H. Kamimura. W. A. Benjamin Inc. Section 22.

    Google Scholar 

  25. Pound, R. V. (1957), “Spontaneous Emission and the Noise Figure of Maser Amplifiers”, Ann. Phys. ( N.Y. ) 1, 24–32.

    Google Scholar 

  26. Schawlow, A. L. and Townes, C. H. (1958), “Infrared and Optical Masers”, Phys. Rev. 112, 1940–1949.

    Google Scholar 

  27. Weber, J. (1959), “Masers”, Revs. Modern Phys. 31, 681–710; erratum 32, 1033 (1960).

    ADS  Google Scholar 

  28. Haken, H. (1966), “Theory of Intensity and Phase Fluctuations of a Homogeneously Broadened Laser” Z. Physik 190, 327–356.

    Article  MathSciNet  ADS  Google Scholar 

  29. Sauermann, H. (1965), “Dissipation and Fluctuations in einem Zwei-Niveau-System”, Z. Physik 188, 480–505.

    Article  ADS  Google Scholar 

  30. Risken, H., Schmid, C. and Weidlich, W. (1966), “Fokker-Planck Equation for atoms and light mode in a laser model with quantum-mechanically determined dissipation and fluctuation coefficients,” Phys. Letters 20, 489–491.

    Article  ADS  Google Scholar 

  31. Lax, M. (1965b), Classical Noise V: “Noise in Self-Sustained Oscillators”, Phys. Rev. 160, 290–307 referred to later as V.

    Google Scholar 

  32. Gerhardt, H., Welling, H. and Güttner, A. (1972), “Measurements of the laser line width due to quantum phase and quantum amplitude noise above and below threshold,” Z. Physik 253, 113–126.

    Article  ADS  Google Scholar 

  33. Grossman, S. and Richter, P. H. (1971), “Laser Threshold and Nonlinear Landau Fluctuation Theory of Phase Transitions”, Z. Physik 242, 458–475.

    Article  ADS  Google Scholar 

  34. Risken, H. and Seybold, R. (1972), “Linewidth of a Detuned Single Mode Laser Near Threshold”, Physics Letters 38A, 63–64.

    Article  Google Scholar 

  35. Lax, M. (1966c), “Quantum Noise V: Phase Noise in a Homogeneously Broadened Maser,” in Physics of Quantum Electronics, P. L. Kelley, B. Lax and P. E. Tanenwald, eds. ( McGraw-Hill Book Co., Inc., N.Y. ) pp. 735–747.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Lax, M. (1980). Time Reversal in Dissipative Systems. In: Gruber, B., Millman, R.S. (eds) Symmetries in Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3833-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3833-8_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3835-2

  • Online ISBN: 978-1-4684-3833-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics