Skip to main content

Electrical Conductivity in Liquids of Geological and Industrial Interest

  • Chapter
  • 276 Accesses

Abstract

The electrical conductivity of geological liquids is usually studied for the purpose of gaining information about the composition of the system or the structure of the liquid. Three types of geological liquids will be referred to in this chapter: the sea, geothermal waters, and magmas or silicate melts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Goldberg, ed., The Sea, Vol. 5, Marine Chemistry, Wiley- Interscience, New York (1974).

    Google Scholar 

  2. F. J. Millero, in The Sea (D. Goldberg, ed.), Vol. 5, Wiley-Interscience, New York (1974).

    Google Scholar 

  3. Ninth report of the joint panel on oceanographic tables and standards. UNESCO Technical Papers in Marine Science, No. 30, Paris, 11–13 September 1978, UNESCO (1979).

    Google Scholar 

  4. M-S. Chen and L. Onsager, The generalized conductance equation, J. Phys. Chem. 81, 2017–2021 (1977).

    Article  CAS  Google Scholar 

  5. R. A. Cox, in Chemical Oceanography ( J. P. Riley and G. Skinrow, eds.), Academic Press, London (1965), pp. 73–120.

    Google Scholar 

  6. C. T. Chen and F. J. Millero, The specific volume of sea water at high pressures, Deep-Sea Res. 23, 595–612 (1976).

    Google Scholar 

  7. D. N. Connors and P. K. Weyl, The partial equivalent conductance of salts in seawater and the density conductance relationship, Limnol. Oceanog. 13, 35–50 (1968).

    Article  Google Scholar 

  8. D. A. Lown and H. R. Thirsk, Proton transfer conductance in aqueous solution; Part 1, Conductance of concentrated aqueous alkali metal hydroxide solutions at elevated temperatures and pressures, Trans. Faraday Soc. 67, 132–148 (1971).

    Article  CAS  Google Scholar 

  9. S. K. Fellows, High temperature conductance of concentrated salt solutions, Ph.D. Thesis, Victoria University of Wellington, New Zealand (1971).

    Google Scholar 

  10. R. A. Home and R. P. Young, The electrical conductivity of aqueous 0.03 to 4.0 M potassium chloride solutions under hydrostatic pressure, J. Phys. Chem. 71, 3824–3832 (1967).

    Article  Google Scholar 

  11. J. U. Hwang, H. D. Ludemann, and D. Hartmann, Die elektrische Leitfahigkeit konzentrierter wassriger Alkalihalogenidlosungen bei hohen Drucken und Temperaturen, High Temperatures-High Pressures 2, 651–669 (1970).

    CAS  Google Scholar 

  12. A. Bradshaw and K. E. Schleicher, The effect of pressure on the electrical conductance of sea water, Deep-Sea Res. 12, 151–162 (1965).

    Google Scholar 

  13. F. H. Fisher, Multistate dissociation and the effect of pressure on the equilibrium on magnesium sulfate, J. Phys. Chem. 69, 695–698 (1965).

    Article  CAS  Google Scholar 

  14. F. H. Fisher, and A. P. Fox, KSO -4 , NaSO -4 , and MgCl>+ ion pairs in aqueous solutions up to 2000 atm, J. Solution Chem. 6, 641–650 (1977).

    Article  CAS  Google Scholar 

  15. A. J. Ellis and W. A. J. Mahon, Chemistry and Geothermal Systems, Academic Press, New York (1977).

    Google Scholar 

  16. B. S. Smolyakov, Limiting Equivalent Ionic Conductance up to 200°C, International Conference on High Temperature and High Pressure Electrochemistry in Aqueous Solutions, University of Surrey (1973), pp. 177–181.

    Google Scholar 

  17. W. L. Marshall, Predictions of the geochemical behaviour of aqueous electrolytes at high temperatures and pressures, Chemical Geology 10, 56–58 (1972).

    Article  Google Scholar 

  18. A. J. Ellis and D. W. Anderson, The effect of pressure on the first acid dissociation constants of “sulphurous” and phosphoric acids, J. Chem Soc. 342, 1765–1767 (1961).

    Article  Google Scholar 

  19. A. J. Ellis and D. W. Anderson, The first acid dissociation constant of hydrogen sulphide at high pressures, J. Chem. Soc. 917, 4678–4680 (1961).

    Google Scholar 

  20. A. J. Ellis, The effect of pressure on the first dissociation constant of “carbonic acid,” J. Chem. Soc. 750, 3689–3699 (1959)

    Article  Google Scholar 

  21. A. J. Read, The first ionization constant of carbonic acid from 25 to 250°C and to 2000 bar, J. Solution Chem. 4, 53–70 (1975).

    Article  CAS  Google Scholar 

  22. S. D. Hamann, Physico-chemical Effects of Pressure, Butterworths, London (1957).

    Google Scholar 

  23. R. W. Henly and A. McNabb, Magmatic vapor plumes and ground water interaction in porphyry copper emplacement, Economic Geology 73, 1–19 (1978).

    Article  Google Scholar 

  24. H. S. Waff, Theoretical consideration of electrical conductivity in a partially molten mantle and implications for geothermometry, J. Geophys. Res. 79, 4003–4010 (1974).

    Article  Google Scholar 

  25. J. O’M. Bockris, J. A. Kitchener, S. Ignatowicz, and J. W. Tomlinson, The electrical conductivity of silicate melts: Systems containing Ca, Mn and Al, Discuss. Faraday Soc. 4, 265–281 (1948).

    Article  Google Scholar 

  26. J. O’M. Bockris, J. A. Kitchener, S. Ignatowicz, and J. W. Tomlinson, Electric conductance in liquid silicates, Trans. Faraday Soc. 48, 75–91 (1952).

    Article  CAS  Google Scholar 

  27. J. O’M. Bockris, J. A. Kitchener, and A. E. Davies, Electric transport in liquid silicates, Trans. Faraday Soc. 48, 536–548 (1951).

    Article  Google Scholar 

  28. J. O’M. Bockris and G. W. Mellors, Electric conductance in liquid lead silicates and borates, J. Phys. Chem. 60, 1321–1328 (1956).

    Article  CAS  Google Scholar 

  29. R. E. Tickle, The electrical conductance of molten alkali silicates, I, Experiments and results, Phys. Chem. Glasses 8, 101–112 (1967)

    CAS  Google Scholar 

  30. R. E. Tickle, The electrical conductance of molten alkali silicates, II, Theoretical discussion, Phys. Chem. Glasses 8, 113–124(1967).

    Google Scholar 

  31. H. S. Waff and D. F. Weill, Electrical conductivity of magmatic liquids, effects of temperature, oxygen fugacity and composition, Earth Planet. Sci. Lett. 28, 254–260 (1975).

    Article  CAS  Google Scholar 

  32. H. Watanabe, Measurements of electrical conductivity of basalt at temperatures up to 1500°C and pressure to about 20 kilobars, Spec. Contr. Geophys. Inst. Kyoto Univ. 10, 159–170 (1970).

    Google Scholar 

  33. N. T. Khitarov and A. V. Slutsky, Influence de la temperature et de la pression sur la conductibilité electrique de l’albite et du basalte, J. Chim. Phys. et Phys. Chim. 64, 1085–1091 (1967).

    CAS  Google Scholar 

  34. I. Kushiro, Viscosity and structural changes of albite (NaA1Si3O8) melt at high pressures, Earth Planet Sci. Lett. 41, 87–90 (1978).

    Article  CAS  Google Scholar 

  35. I. Kushiro, Changes in viscosity and structure of melt of NaA1Si2O6 composition at high pressures, J. Geophys. Res. 81, 6347–6350 (1976).

    Article  CAS  Google Scholar 

  36. I. Kushiro, H. S. Yodder, and B. O. Mysen, Viscosities of basalt and andesite melts at high pressures, J. Geophys. Res. 81, 6351–6356 (1976).

    Article  CAS  Google Scholar 

  37. E. B. Lebedev and N. I. Khitarov, Influence of water on the electrical conductivity of silicate melts at high pressures, High Temperature High Pressure Electrochemistry in Aqueous Solutions N.A.C.E. at University of Surrey, England (1973).

    Google Scholar 

  38. A. T. Kuhn, ed., Industrial Electrochemical Processes, Elsevier, Amsterdam (1971).

    Google Scholar 

  39. C. E. Bowen, Production of H2 and O2 by electrolysis of H20, Proc. Institution of Electrical Engineers 90, 474–485 (1943).

    Google Scholar 

  40. C. A. Angell, Electrical conductance of ionic liquids with water contents in the range 0–80 mol.%, Aust. J. Chem. 23, 929–937 (1970).

    Article  CAS  Google Scholar 

  41. D. A. Lown and H. R. Thirsk, Proton transfer conductance in aqueous solution, Parts 1 and 2, Trans. Faraday Soc. 67, 132–152 (1971).

    Article  CAS  Google Scholar 

  42. A. Reger, E. Peled, and E. Gileadi, Mechanism of high conductivity in a medium of low dielectric constant, J. Phys. Chem. 83, 873–879 (1979).

    Article  CAS  Google Scholar 

  43. A. Reger, E. Peled, and E. Gileadi, Determination of the nature of the ionic species in a low dielectric constant solvent from Transference number measurements, J. Phys. Chem. 83, 869–873 (1979).

    Article  CAS  Google Scholar 

  44. C. T. Moynihan, in Ionic Interactions (S. Petrucci, ed.), Vol. 1, Academic Press, New York (1971), Chapter 5.

    Google Scholar 

  45. C. T. Moynihan and R. W. Laity, Relative cation mobilities in potassium chloride- lithium chloride melts, J. Phys. Chem. 68, 3312–3317 (1964).

    Article  CAS  Google Scholar 

  46. E. R. Van Artsdalen and I. S. Yaffe, Electrical conductance and density of molten salt systems: KCl-LiCl, KCl-NaCl and KCl-KI, J. Phys. Chem. 59, 118–127 (1955).

    Article  Google Scholar 

  47. W. K. Behl and J. J. Egan, Transference numbers and ionic mobilities from electromotive force measurements on molten salt mixtures, J. Phys. Chem. 71, 1764–1769 (1967).

    Article  CAS  Google Scholar 

  48. H. H. Emons and H. Vogt, On the structure of charge-unsymmetrical salt melts of alkaline earth and alkali metal chlorides, Z. Anorg. Allg. Chem. 394, 279–289 (1972).

    Article  CAS  Google Scholar 

  49. D. S. Patterson and M. Chance, Production of sodium, British Patent No. 918, 809 (1963).

    Google Scholar 

  50. Jacques van Diest, Process for the manufacture of sodium by electrolysis of fused salt bath, U.S. Patent No. 3, 051, 635 (1960).

    Google Scholar 

  51. A. V. Tomashov, V. A. Nichkov, A. E. Mordovin, and R. S. Khailikov, Interaction of potassium chlorides and beryllium chloride in melts and their mixtures, Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 5, 81–85 (1975).

    Google Scholar 

  52. K. Grjotheim, C. Krohn, M. Malinovsky, K. Matiasovsky, and J. Thonstad, Aluminium Electrolysis, Aluminium-Verlag GmbH, Düsseldorf (1977).

    Google Scholar 

  53. E. W. Yim and M. Feinleib, Electrical conductivity of molten fluorides, J. Electrochem. Soc. 104, 626–630 (1957).

    Article  CAS  Google Scholar 

  54. K. Gijotheim, M. Malinovsky, and K. Matiasovsky, The effect of different additives on the conductivity of cryolite-alumina melts, J. Metals 21, 28–33 (1969).

    Google Scholar 

  55. Chemistry Division, DSIR, Petone, New Zealand.

    Google Scholar 

  56. S. H. Wilson, Waiotapu Geothermal Field, New Zealand Department of Scientific and Industrial Research Bulletin 155 (1963a), pp. 87–118.

    Google Scholar 

  57. W. F. Giggenbach, The chemistry of Crater Lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period, N.Z. J. Sci. 17, 33–45 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Smedley, S.I. (1980). Electrical Conductivity in Liquids of Geological and Industrial Interest. In: The Interpretation of Ionic Conductivity in Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3818-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3818-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3820-8

  • Online ISBN: 978-1-4684-3818-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics