Skip to main content

Transport of Sodium and Potassium across the Blood-Brain Barrier

  • Chapter
Book cover The Cerebral Microvasculature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 131))

Abstract

Active transport of sodium and potassium across the blood-brain barrier (BBB) has been suspected, but until quite recently, there has been no direct evidence that the blood vessels of the central nervous system (CNS) are even capable of this kind of transport. Evidence from in vivo experiments indicated that special mechanisms at the blood-brain barrier regulated the concentration of potassium in the brain extracellular fluid (ECF) (1). Interpretation of these experiments, however, is complicated by the difficulty in assigning specific transport properties to the walls of the blood vessels when the effects of choroid plexus and glia cannot be excluded (2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradbury MWB, Segal MB, Wilson J: Transport of potassium at the blood-brain barrier. J Physiol (Lond) 222: 617–632, 1972.

    Article  Google Scholar 

  2. Bradbury MWB: The Concept of a Blood-brain Barrier. New York, John Wiley and Sons, 1979, pp 211–213.

    Google Scholar 

  3. Bering EA Jr: Circulation of the cerebrospinal fluid. Demonstration of the choroid plexus as a generator of the force for flow of fluid and ventricular enlargement. J Neurosurg 19: 405–413, 1962.

    Article  PubMed  Google Scholar 

  4. Milhorat TH: Choroid plexus and the cerebrospinal fluid production. Science 166: 1514–1516, 1969.

    Article  CAS  PubMed  Google Scholar 

  5. Pollay M, Curl F: Secretion of cerebrospinal fluid by the ventricular ependyma of the rabbit. Am J Physiol 213: 1031–1038, 1967.

    CAS  PubMed  Google Scholar 

  6. Vates TS, Bonting SL, Oppelt WW: Na+-K+ activated adenosine triphosphatase formation of cerebrospinal fluid in the cat. Am J Physiol 206: 1165–1172, 1964.

    CAS  PubMed  Google Scholar 

  7. Ames A, Higashi K, Nesbett FB: Relation of potassium concentration in choroid plexus to that in plasma. J Physiol (Lond) 181: 506–515, 1965.

    Article  CAS  Google Scholar 

  8. Quinton PM, Wright EM, Tormey J: Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol 58: 724–730, 1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katzman R, Leiderman PH: Brain potassium exchange in normal and immature rats. Am J Physiol 175: 263–270, 1953.

    CAS  PubMed  Google Scholar 

  10. Prince DA, Lux HD, Heher E: Measurement of extracellular potassium activity in cat cortex. Brain Res 50: 489–495, 1973.

    Article  CAS  PubMed  Google Scholar 

  11. Wallace GB, Brodie BB: The distribution of iodide, thiocyanate, bromide and chloride in the central nervous system and spinal fluid. J Pharmacol Exp Ther 65: 220–226, 1939.

    CAS  Google Scholar 

  12. Brightman MW, Reese TS: Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677, 1969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brendel K, Meezan E, Carlson EL: Isolated brain microvessels: A purified, metabolically active preparation from bovine cerebral cortex. Science 185: 953–955, 1974.

    Article  CAS  PubMed  Google Scholar 

  14. Goldstein GW, Wolinsky JS, Csejtey J, et al: Isolation of metabolically active capillaries from rat brain. J Neurochem 25: 715–717, 1975.

    Article  CAS  PubMed  Google Scholar 

  15. Mrsulja BB, Mrsulja BJ, Fujimoto T, et al: Isolation of brain capillaries: A simplified technique. Brain Res 110: 361–365, 1976.

    Article  CAS  PubMed  Google Scholar 

  16. Suddith RL, Kelly PJ, Hutchison HT, et al: In vitro demonstration of an endothelial proliferative factor produced by neural cell lines. Science 190: 682–684, 1975.

    Article  CAS  PubMed  Google Scholar 

  17. Lowry OH, Rosebrough NJ, Farr AL, et al: Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275, 1951.

    CAS  PubMed  Google Scholar 

  18. Medzihradsky FDS, Nandhasri S, Idoyagg-Vargas, etal: A comparison of the ATPase activity of the glial cell fraction and the neuronal perikaryal fraction isolated in bulk from rat cerebral cortex. J Neurochem 18: 1599–1603, 1971.

    Article  CAS  PubMed  Google Scholar 

  19. Embree LJ, Hess HH, Shein HM: Sodium-potassium-ATPase activity of normal and virally transformed hamster astroglia grown subcutaneously. Brain Res 27: 422–425, 1971.

    Article  CAS  PubMed  Google Scholar 

  20. Kimelberg HK: Active potassium transport and [Na++K+] ATPase activity in cultured glioma and neuroblastoma cells. J Neurochem 22: 971–976, 1974.

    Article  CAS  PubMed  Google Scholar 

  21. Eisenberg HH, Suddith RL: Sodium-potassium ATPase in brain capillaries. Trans Soc Neurosci 3: 217, 1977.

    Google Scholar 

  22. Kimelberg HK, Biddlecome S, Narumi S, et al: ATPase and carbonic anhydrase activities of bulk-isolated neuron, glia and synaptosome fractions from rat brain. Brain Res 141: 305–323, 1978.

    Article  CAS  PubMed  Google Scholar 

  23. Bonting SL, Caravaggio LL: Studies on sodium-potassium activated adenosine triphosphatase. V. Correlation of enzyme activity with cation flux in six tissues. Arch Biochem Biophys 101: 37–46, 1963.

    Article  CAS  PubMed  Google Scholar 

  24. Firth JA: Cytochemical localization of the regulation interface between blood and brain. Experientia 33: 1093–1094, 1977.

    Article  CAS  PubMed  Google Scholar 

  25. Eisenberg HM, Suddith RL: Cerebral vessels have the capacity to transport sodium and potassium. Science 206: 1083–1085, 1979.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Eisenberg, H.M., Suddith, R.L., Crawford, J.S. (1980). Transport of Sodium and Potassium across the Blood-Brain Barrier. In: Eisenberg, H.M., Suddith, R.L. (eds) The Cerebral Microvasculature. Advances in Experimental Medicine and Biology, vol 131. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3752-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3752-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3754-6

  • Online ISBN: 978-1-4684-3752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics