Skip to main content

Biochemical Characteristics of Cerebral Capillaries

  • Chapter
The Cerebral Microvasculature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 131))

Abstract

The endothelial cells of the cerebral vessels differ histochemically from those of other organs (1). Cerebral capillaries had been found to be rich in γ glutamyl transpeptidase (γ-GTP) and alkaline phosphatase, enzymes found in the endothelial cells of the gut and renal cells, but not in the capillaries of other organs (2). On the basis of these kinds of observations, it was thought that enzymes found in endothelial cells of the brain may play a role in the function of the blood-brain barrier (BBB) (3). More recently, enzymatic studies of these cells have been facilitated by the simplicity of isolation of cerebral capillaries (4–8), Using this approach, the specific activities of many enzymes in brain capillaries were found to differ from those in brain parenchyma (6,8,9). Studies of hexokinase, lactate dehydrogenase (LDH), adenosine triphosphatase (ATPase) and guanosine triphosphatase (GTPase) in the brain capillaries and parenchyma have shown this difference and indicate that there may be a difference in enzyme function dependent on location (10,11). We tentatively propose that the enzymatic organization of the brain microvasculature functions in the maintenance of the BBB and participates in the transport of substances between blood and brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landers JW, Chason JL, Gonzales JE, et al: Morphology and enzymatic activity of rat cerebral capillaries. Lab Invest 11: 1253–1259, 1962.

    CAS  PubMed  Google Scholar 

  2. Albert Z, Orlowski M, Rzucildo Z, et al: Studies on gamma - glutamyl transpeptidase activity and its histochemical localization in the central nervous system of man and different animal species. Acta Histochem 25: 312–320, 1966.

    CAS  PubMed  Google Scholar 

  3. Björklund A, Falck B, Hromek F, et al: An enzymic barrier mechanism for monoamine precursors in the newly-formed brain capillaries following electrolytic or mechanical lesions. J Neurochem 16: 1605–1608, 1969.

    Article  PubMed  Google Scholar 

  4. Jo F, Karnushina I: A procedure for the isolation of capillaries from rat brain. Cytobios 8: 41–48, 1973.

    Google Scholar 

  5. Brendel K, Meezan E, Carlson EC: Isolated brain microvessels: A purified, metabolically active preparation from bovine cerebral cortex. Science 185: 953–955, 1974.

    Article  CAS  PubMed  Google Scholar 

  6. Goldstein GW, Wolinsky JS, Csejtey J, et al: Isolation of metabolically active capillaries from rat brain. J Neurochem 25: 715–717, 1975.

    Article  CAS  PubMed  Google Scholar 

  7. Mršulja BB, Mršulja BJ, Fujimoto T, et al: Isolation of brain capillaries: A simplified technique. Brain Res 110: 361–365, 1976.

    Article  PubMed  Google Scholar 

  8. Djuričić BM, Mršulja BB: Enzymic activity of the brain: Microvessels vs. total brain homogenate. Brain Res 138: 561–564, 1977.

    Article  PubMed  Google Scholar 

  9. Djuričić BM, Rogac Lj, Spatz M, et al: Brain microvessels: enzymic activités. In, Cervos-Navarro J, Betz E, Ebhardt G, Ferszt R and Wullenweber R: Advances in Neurology, New York, Raven Press, 1978, pp 197–205.

    Google Scholar 

  10. Djuričić BM, Mršulja BB: Brain microvessel hexokinase: Kinetic properties. Experientia 35: 169–171, 1979.

    Article  PubMed  Google Scholar 

  11. Djuričić BM, Stojanovic T, Mršulja BB: Brain capillary guanosine triphosphatase: A distinction from adenosine triphosphatase. Experientia, in press.

    Google Scholar 

  12. Shonk CE, Boxer GE: Enzyme patterns in human tissues. Cancer Res 24: 709–721, 1964.

    CAS  PubMed  Google Scholar 

  13. Lowry OH, Passonneau JV: A flexible system of enzymatic analysis. New York, Academic Press, 1972.

    Google Scholar 

  14. Lowry OH, Passonneau JV: The relationship between substrates and enzymes of glycolysis in brain. J Biol Chem 239: 31–41, 1964.

    CAS  PubMed  Google Scholar 

  15. Everse J, Kaplan NO: Lactate dehydrogenase: Structure and function. In, Meister A (ed): Advances in Enzymology, New York, John Wiley & Sons, 1973, pp 61–133.

    Google Scholar 

  16. Fisher MA, Hagen DQ, Colein RB: Aminooxy acetic acid: Interactions with gamma-amino-butyric acid and the blood-brain barrier. Science 153: 1668–1670, 1966.

    Article  CAS  PubMed  Google Scholar 

  17. Jo F, Csillik B: Topographic correlation between hemato-encephalic barrier and the Cholinesterase activity of brain capillaries. Exp Brain Res 1: 147–151, 1966.

    Google Scholar 

  18. Jo F, Varkonyi T, Csillik B: Developmental alterations in the histochemical structures of brain capillaries: A histochemical contribution to the problem of the blood-brain barrier. Histochemie 9: 140–148, 1967.

    Article  Google Scholar 

  19. Svendgaard N-Aa, Björklund A, Hardebo J-A: Axonal degeneration associated with a defective blood-brain barrier in cerebral implants. Nature 255: 334–336, 1975.

    Google Scholar 

  20. Lai FM, Udenfriend S, Spector S: Presence of norepinephrine and related enzymes in isolated brain microvessels. Proc Natl Acad Sci USA 72: 4622–4625, 1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hardebo JE, Edvinsson L, Falckm B,: Experimental models for histochemical and chemical studies of the enzymatic blood-brain barrier for amine precursors. In, Cervos-Navarro J (ed): The Cerebral Vessel Wall, New York, Raven Press, 1976, pp 233–244.

    Google Scholar 

  22. Lai FM, Spector S: Studies on the monoamine exodase and catechol-O-methyltransferase of the rat cerebral micro- vessels. Arch Int Pharmacodyn 233: 227–234, 1978.

    CAS  PubMed  Google Scholar 

  23. Mršulja BB, Djuričić BM, Mršulja BJ, et al: Brain microvessels: Effects of ischemia and dihydroergotoxine on enzymic activities. In, Cervos-Navarro J, Betz E, Ebhardt G, Ferszt R, Wullenweber R (eds): Advances in Neurology, New York, Raven Press, 1978, pp 207–213.

    Google Scholar 

  24. Djuričić BM, Mršulja BB: Brain microvessels: Glucose metabolizing enzymes in ischemia and subsequent recovery. In, Mršulja BB, Rakic LjM, Klatzo I, Spatz M (eds): Pathophysiology of Cerebral Energy Metabolism, New York, Plenum Press, 1979, pp 239–252.

    Google Scholar 

  25. Spatz M, Micic D, Fujimoto T, et al: Transport phenomena in cerebral ischemia. In, Mršulja BB, Rakic LjM, Klatzo I, and Spatz M: Pathophysiology of Cerebral Energy Metabolism, New York, Plenum Press, 1979, pp 143–153.

    Chapter  Google Scholar 

  26. Orlowski M: Possible role of glutathione in transport processes. In, Levy G, Battistin L and Lajtha A (eds): Advances of Experimental Medicine and Biology, New York, Plenum Press, 1976, pp 13–28.

    Google Scholar 

  27. Bertler A, Falck B, Owman Ch, et al: The localization of monoaminergic blood-brain barrier mechanisms. Pharmacol Rev 18: 369–385, 1966.

    CAS  PubMed  Google Scholar 

  28. Kaplan GP, Hartman BK, Creveling CR: Immunohistochemical demonstration of catechol-O-methyl transferase in mammalian brain. Brain Res 167: 241–250, 1979.

    Article  CAS  PubMed  Google Scholar 

  29. Purich DL, Fromm HJ: The kinetics and regulation of rat brain hexokinase. J Biol Chem 246: 3456–3463, 1971.

    CAS  PubMed  Google Scholar 

  30. Lenard JL: Protein biosynthesis. Ann Rev Biochem 40: 409–447, 1971.

    Article  Google Scholar 

  31. Cohen ML, Blume AS, Berkowitz BA: Vascular adenylate cyclase: Role of age and guanine nucleotide activation. Blood Vessels 14: 25–42, 1977.

    CAS  PubMed  Google Scholar 

  32. Goldstein GW: Metabolism of brain capillaries in relation to active ion transport. In, Cervos-Navarro J, Betz E, Ebhardt G, Ferszt R and Wullenweber R (eds): Advances in Neurology, New York, Raven Press, 1978, pp 11–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Mršulja, B.B., Djuričić, B.M. (1980). Biochemical Characteristics of Cerebral Capillaries. In: Eisenberg, H.M., Suddith, R.L. (eds) The Cerebral Microvasculature. Advances in Experimental Medicine and Biology, vol 131. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3752-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3752-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3754-6

  • Online ISBN: 978-1-4684-3752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics