Skip to main content

Blood-Brain Barrier Transport During Anesthesia

  • Chapter
  • 157 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 131))

Abstract

The effects of anesthetics on the central nervous system can be described in terms of their primary direct action on membranes and enzymes or their secondary effects on brain function and metabolism. Elucidation of some of the direct effects of anesthetics on membranes such as lateral phase separation (1), membrane expansion (2,3) and membrane lipoprotein conformational changes (4) strongly suggest that alterations in membrane transport processes are likely to occur. The aim of the studies to be described was to elucidate the effects of anesthetics on blood-brain barrier (BBB) glucose transport. Changes in glucose transport may result from both the primary and secondary effects of anesthetics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Trudell, JR: A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology 46: 5–10, 1977.

    Article  CAS  PubMed  Google Scholar 

  2. Miller, KW, Paton, WDM, Smith, RA, et al: The pressure reversal of general anesthesia and the critical volume hypothesis. Mol. Pharmacol. 9: 131–143, 1973.

    CAS  PubMed  Google Scholar 

  3. Seeman P: The membrane expansion theory of anesthesia. In, Fink BR (ed): Molecular Mechanisms of Anesthesia, New York, Raven Press, 1975, pp 243–251.

    Google Scholar 

  4. Woodbury JW, D’Arrigo JS, Eyring H: Molecular mechanism of general anesthesia: Lipoprotein conformation change theory. In, Fink BR (ed): Molecular Mechanisms of Anesthesia, New York, Raven Press, 1975, pp 253–275.

    Google Scholar 

  5. Bachelard HS, Daniel PM, Love ER, et al: The transport of glucose into the brain of the rat in vivo. Proc Roy Soc 183: 71–82, 1973.

    Article  CAS  Google Scholar 

  6. Betz, AL, Gilboe, DD, Yudilevich, DL, et al: Kinetics of unidirectional glucose transport into the isolated dog brain. Am J Physiol 225: 586–592, 1973.

    CAS  PubMed  Google Scholar 

  7. Bidder TG: Hexose translocation across the blood-brain interface: Configurational aspects. J Neurochem 15: 867–874, 1968.

    Article  CAS  PubMed  Google Scholar 

  8. Brondsted HE: Exchange of glucose between plasma, brain extracellular fluid and cerebral ventricles in cats and effects of intraventricular acetazolamide and insulin. Acta Physiol Scand 80: 122–130, 1970.

    Article  CAS  PubMed  Google Scholar 

  9. Buschiazzo, PM, Terrell, EB, Regen, DM: Sugar transport across the blood-brain barrier. Am J Physiol 219: 1505–1513, 1970.

    CAS  PubMed  Google Scholar 

  10. Crone C: Facilitated transfer of glucose from blood into brain tissue. J Physiol 181: 103–113, 1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cutler, RWP, Sipe, JC: Mediated transport of glucose between blood and brain in the cat. Am J Physiol 220:1182- 1186, 1971.

    Google Scholar 

  12. Eidelberg, E, Fishman, J, Hams, ML: Penetration of sugar across the blood-brain barrier. J Physiol 191: 47–57, 1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gilboe, DD, Betz, AL: Kinetics of glucose transport in the isolated dog brain. Am J Physiol 219: 774–778, 1970.

    CAS  PubMed  Google Scholar 

  14. Growdon, WA, Bratton, TS, Houston, MC, et al: Brain glucose metabolism in the intact mouse. Am J Physiol 221: 1738–1745, 1971.

    CAS  PubMed  Google Scholar 

  15. Oldendorf, WH: Brain uptake of radiolabeled amino acids, amines, and hexose after arterial injection. Am J Physiol 221: 1629–1639, 1971.

    CAS  PubMed  Google Scholar 

  16. Pardridge, WM, Oldendorf, WH: Kinetics of blood-brain barrier transport of hexoses. Biochim Biophys Acta 382: 377–392, 1975.

    Article  CAS  PubMed  Google Scholar 

  17. Yudilevich, DL, De Rose, N: Blood-brain transfer of glucose and other molecules measured by rapid indicator dilution. Am J Physiol 220: 841–846, 1971.

    CAS  PubMed  Google Scholar 

  18. Zivin, JA, Snarr, JF: A stable preparation for rat brain perfus ion: Effect of flow rate on glucose uptake. J Appl Physiol 32: 658–663, 1972.

    CAS  PubMed  Google Scholar 

  19. Brunner, EA, Passonneau, JV, Molstad, C: The effect of volatile anesthetics on levels of metabolites and on metabolic rate in brain. J Neurochem 18: 2301–2316, 1971.

    Article  CAS  PubMed  Google Scholar 

  20. Mayman, CI, Gatfield, PD, Breckenridge BM: The glucose content of brain in anesthesia. J Neurochem 18: 483–487, 1964.

    Article  Google Scholar 

  21. Nilsson, L, Siesjö, BK: Influence of anaesthetics on the balance between production and utilization of energy in the brain. J Neurochem 23: 29–36, 1974.

    Article  CAS  PubMed  Google Scholar 

  22. Bensemana, D, Gascon, AL: Relationship between analgesia and turnover of brain biogenic amines. Can J Physiol Pharmacol 56: 721–730, 1978.

    Article  CAS  PubMed  Google Scholar 

  23. Carmichael, FJ, Israel, Y: In vitro inhibitory effects of narcotic analgesics and other psychotropic drugs on the active uptake of norepinephrine in mouse brain tissue. J Pharmacol Exp Ther 186: 253–260, 1973.

    CAS  PubMed  Google Scholar 

  24. Lindqvist, M, Kehr, W, Carlsson, A: Effect of pentobarbitone and diethyl ether on the synthesis of monoamines in rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 284: 263–277, 1974.

    Article  CAS  PubMed  Google Scholar 

  25. Smith, AL, Wollman, H: Cerebral blood flow and metabolism: Effects of anesthetic drugs and techniques. Anesthesiology 36: 378–400, 1972.

    Article  CAS  PubMed  Google Scholar 

  26. Nemoto, EM, Stezoski, SW, MacMurdo, D: Glucose transport across the rat blood-brain barrier during anesthesia. Anesthesiology 49: 170–176, 1978.

    Article  CAS  PubMed  Google Scholar 

  27. Oldendorf, WH: Measurement of brain uptake of radiolabeled substance using a tritriated water internal standard. Brain Res 24: 372–376, 1970.

    Article  CAS  PubMed  Google Scholar 

  28. Bolwig, TG, Lassen, NA: The diffusion permeability to water of the rat blood-brain barrier. Acta Physiol Scand 93: 415–422, 1975.

    Article  CAS  PubMed  Google Scholar 

  29. Gilman, AG: A protein binding assay for adenosine 3′:5′- cyclic monophosphate. Proc Natl Acad Sci 67: 305–312, 1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greene, NM, Cervenko, FW: Inhalation anesthetics, carbon dioxide and glucose transport across red cell membrane. Acta Anes Scand (Suppl) 28: 3–18, 1967.

    Article  Google Scholar 

  31. Greene, NM, Webb, SR: Facilitated transfer of halothane in human erythrocytes. Anesthesiology 31: 548–552, 1969.

    Article  CAS  PubMed  Google Scholar 

  32. Angel, C, Bounds, HM Jr, Perry, A: A comparison of the effects of halothane on blood-brain barrier and memory consolidation. Dis Nerv Syst 33: 87–93, 1972.

    CAS  PubMed  Google Scholar 

  33. Forster, A, Van Horn, K, Marshall, LF, et al: Anesthetic effects on blood-brain barrier function during acute arterial hypertension. Anesthesiology 49: 26–30, 1978.

    Article  CAS  PubMed  Google Scholar 

  34. Raichle, ME, Eichling, JO, Grubb, RL, et al: Central nor adrenergic regulation of brain microcirculation. In, Pappius HM and Feindel W (eds): Dynamics of Brain Edema. New York, Springer-Verlag, 1976, pp 11–17.

    Google Scholar 

  35. Michenfelder, JD: The in vivo effects of massive concentrations of anesthetics on canine cerebral metabolism. In, Fink BR (ed): Molecular Mechanisms of Anesthesia, New York, Raven Press, 1975, pp 537–543.

    Google Scholar 

  36. Woo, SY, Verosky,M, Vulliemoz, Y, et al: Dopamine-sensitive adenylate cyclase activity in the rat caudate nucleus during exposure to halothane and enflurane. Anesthesiology 51: 27–33, 1979.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Nemoto, E.M. (1980). Blood-Brain Barrier Transport During Anesthesia. In: Eisenberg, H.M., Suddith, R.L. (eds) The Cerebral Microvasculature. Advances in Experimental Medicine and Biology, vol 131. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3752-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3752-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3754-6

  • Online ISBN: 978-1-4684-3752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics