Skip to main content

The Basis for Active Transport at the Blood-Brain Barrier

  • Chapter
The Cerebral Microvasculature

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 131))

Abstract

Certain low molecular weight compounds have been shown to enter the brain by specific carrier-mediated transport systems in the endothelial cell membranes (1–4). At least eight such carriers capable of moving solutes from blood into brain have been described (4). Most of the blood-brain barrier (BBB) transport systems that have been described are not able to move solutes against concentration gradients, but instead, facilitate the equilibration of brain and blood concentrations for their particular substrates. Although the BBB acts as an impermeable wall for some solutes and a passive sieve for others, it is generally agreed that an important function is active regulation of the internal milieu of the central nervous system (CNS) (3,5,6). Several reports have suggested that the BBB can mediate solute efflux from the brain against a concentration gradient (7–13), but these studies utilized intact animals and, consequently, their interpretation is made difficult by the presence of neurons, glia and choroid plexus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betz AL, Gilboe DD, Drewes LR: The characteristics of glucose transport across the blood-brain barrier and its relation to cerebral glucose metabolism. In, Levi G, Battistin L, Lajtha A (eds): Transport phenomena in the Nervous System, New York, Plenum Press, 1976, pp 133–149.

    Chapter  Google Scholar 

  2. Lund-Andersen H: Transport of glucose from blood to brain. Physiol Rev 59: 305–352, 1979.

    CAS  PubMed  Google Scholar 

  3. Oldendorf WH: The blood-brain barrier. Exp Eye Res 25 (Suppl): 177–190, 1977.

    Article  CAS  PubMed  Google Scholar 

  4. Pardridge WM, Oldendorf WH: Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28: 5–12, 1977.

    Article  CAS  PubMed  Google Scholar 

  5. Davson H: The blood-brain barrier. J Physiol (Lond) 255: 1–28, 1976.

    Article  CAS  Google Scholar 

  6. Rapoport SI: Blood-brain Barrier in Physiology and Medicine. New York, Raven Press, 1976.

    Google Scholar 

  7. Bito LZ, Davson H, Hollingsworth J: Facilitated transport of prostaglandins across the blood-cerebrospinal fluid and blood-brain barriers. J Physiol (Lond) 256: 273–285, 1976.

    Article  CAS  Google Scholar 

  8. Bradbury MWB, Segal MP, Wilson J: Transport of potassium at the blood-brain barrier. J Physiol (Lond) 221: 617–632, 1972.

    Article  CAS  Google Scholar 

  9. Davson H, Hollingsworth JR: Active transport 131I across the blood-brain barrier. J Physiol (Lond) 233: 327–347, 1973.

    Article  CAS  Google Scholar 

  10. Katzman R: Maintenance of a constant brain extracellular potassium. Fed Proc 35: 1244–1247, 1976.

    CAS  PubMed  Google Scholar 

  11. Lajtha A, Toth J: The brain barrier system II. Uptake and transport of amino acids by the brain. J Neurochem 8: 216–225, 1961.

    Article  CAS  PubMed  Google Scholar 

  12. Lorenzo AV, Snodgrass SR: Leucine transport from the ventricles and the cranial subarachnoid space in the cat. J Neurochem 19: 1287–1298, 1972.

    Article  CAS  PubMed  Google Scholar 

  13. Murray JE, Cutler RWP: Transport of glycine from the cerebro spinal fluid. Factors regulating amino acid concentra-tion in feline cerebrospinal fluid. Arch Neurol 23: 23–31, 1970.

    Article  CAS  PubMed  Google Scholar 

  14. Kotyk A, Janacek K: Cell Membrane Transport. Principles and Techniques, New York, Plenum Press, 1975, pp 139–158.

    Book  Google Scholar 

  15. Hopfer U, Sigrist-Nelson K, Ammann E, Murer H: Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal cells. J Cell Physiol 89: 805–810, 1976.

    Article  CAS  PubMed  Google Scholar 

  16. Murer H, Kinne R: Sidedness and coupling of transport processes in small intestinal and renal epithelia. In, Semenza G, Carafoli E (eds): Biochemistry of Membrane Transport, New York, Springer-Verlag, 1977, pp 292–304.

    Google Scholar 

  17. Pisam M, Ripoche P: Redistribution of surface macromolecules in dissociated epithelial cells. J Cell Biol 71: 907–920, 1976.

    Article  CAS  PubMed  Google Scholar 

  18. Staehelin LA, Hull BE: Junctions between living cells. Sci Am 238: 141–152, 1978.

    Article  Google Scholar 

  19. Brightman MW, Reese TS: Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677, 1969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brightman MW, Reese TS, Feder N: Assessment with the Electron Microscope of the Permeability to Peroxidase of Cerebral Endothelium in Mice and Sharks. In, Crone C, Lassen NA (eds): Capillary Permeability, Proceedings of the Alfred Benzon Symposium II, New York, Academic Press, 1970, pp 463–476.

    Google Scholar 

  21. Reese TS, Karnovsky MJ: Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217, 1967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oldendorf WH, Cornford ME, Brown WJ: The large apparent work capability of the blood-brain barrier: A study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1: 409–417, 1977.

    Article  CAS  PubMed  Google Scholar 

  23. Betz AL, Csejtey J, Goldstein GW: Hexose transport and phosphorylation by capillaries isolated from rat brain. Am J Physiol 236: C96–C102, 1979.

    CAS  PubMed  Google Scholar 

  24. Betz AL, Goldstein GW: Polarity of the blood-brain barrier: Neutral amino acid transport into isolated brain capillaries. Science 202: 225–227, 1978.

    Article  CAS  PubMed  Google Scholar 

  25. Hjelle JT, Baird-Lambert J, Cardinale G, Spector S, Udenfriend S: Isolated microvessels: The blood-brain barrier in vitro. Proc Natl Acad Sci 75: 4544–4548, 1978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sershen H, Lajtha A: Capillary transport of amino acids in the developing brain. Expl Neurol 53: 465–474, 1976.

    Article  CAS  Google Scholar 

  27. Christensen HN: On the development of amino acid transport systems. Fed Proc Fed Am Soc Exp Biol 32: 19–28, 1973.

    CAS  Google Scholar 

  28. Oldendorf WH: Brain uptake of radiolabeled amino acids, amines and hexoses after arterial injection. Am J Physiol 221: 1629–1639, 1971.

    CAS  PubMed  Google Scholar 

  29. Pardridge WM: Kinetics of competitive inhibition of neutral amino acid transport across the blood-brain barrier. J Neurochem 28: 103–108, 1977.

    Article  CAS  PubMed  Google Scholar 

  30. Wade LA, Katzman R: Synthetic amino acids and the nature of L-DOPA transport at the blood-brain barrier. J Neurochem 25: 837–842, 1975.

    Article  CAS  PubMed  Google Scholar 

  31. Goldstein GW: Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J Physiol (Lond) 286: 185–195, 1979.

    Article  CAS  Google Scholar 

  32. Betz AL, Firth JA, Goldstein GW: Polarity of the blood-brain barrier: Distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res (In press).

    Google Scholar 

  33. Samuels S, Fish I, Freedman LS: Effect of γ-glutamyl cycle inhibitors on brain amino acid transport and utilization. Neurochem Res 3: 619–631, 1978.

    Article  CAS  PubMed  Google Scholar 

  34. Perry TL, Hansen S, Kennedy J: CSF amino acids and plasma-CSF amino acid ratios in adults. J Neurochem 24: 587–589, 1975.

    Article  CAS  PubMed  Google Scholar 

  35. Bass NH, Lundberg P: Transport mechanisms in the cerebro spinal fluid system for removal of acid metabolites from developing brain. In, Levi G, Battistin L, Lajtha A (eds): Transport Phenomena in the Nervous System. New York, Plenum Press, 1976, pp 31–40.

    Chapter  Google Scholar 

  36. Milhorat TH, Hammock MK, Fenstermacher JD, Rail DP, Levin VA: Cerebrospinal fluid production by the choroid plexus and brain. Science 173: 330–332, 1971.

    Article  CAS  PubMed  Google Scholar 

  37. Herbst TJ, Raichle ME, Ferrendelli JA: ß-adrenergic regula tion of adenosine 3′–5′–monophosphate concentration in brain microvessels. Science 204: 330–332, 1979.

    Article  CAS  PubMed  Google Scholar 

  38. Nathanson JA, Glaser GH: Identification of ß-adrenergicsensitive adenylate cyclase in intracranial blood vessels. Nature 278: 567–569, 1979.

    Article  CAS  PubMed  Google Scholar 

  39. Betz AL, Gilboe DD, Drewes LR: Kinetics of unidirectional leucine transport into brain: Effects of isoleucine, valine and anoxia. Am J Physiol 228: 895–900, 1975.

    CAS  PubMed  Google Scholar 

  40. Oldendorf WH: Stereospecificity of blood-brain barrier permeability to amino acids. Am J Physiol 224: 967–969, 1973.

    CAS  PubMed  Google Scholar 

  41. Yudilevich DL, De Rose N, Sepulveda FV: Facilitated transport of amino acids through the blood-brain barrier of dog studied in a single capillary circulation. Brain Res 44: 569–578, 1972.

    Article  CAS  PubMed  Google Scholar 

  42. Hansen AJ, Lund-Andersen H, Crone C: K+-permeability of the blood-brain barrier, investigated by aid of a K+- sensitive microelectrode. Acta Physiol Scand 101: 438–445, 1977.

    Article  CAS  PubMed  Google Scholar 

  43. Bito LZ, Bradbury MWB, Davson H: Factors affecting the distribution of iodide and bromide in the central nervous system. J Physiol (Lond) 185: 323–354, 1966.

    Article  CAS  Google Scholar 

  44. Oldendorf WH: Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am J Physiol 224:1450–1453, 1973.

    CAS  PubMed  Google Scholar 

  45. Wagner HJ, Pilgrim C, Brandl J: Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: Role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropath (Berl) 27: 299–315, 1974.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Betz, A.L., Goldstein, G.W. (1980). The Basis for Active Transport at the Blood-Brain Barrier. In: Eisenberg, H.M., Suddith, R.L. (eds) The Cerebral Microvasculature. Advances in Experimental Medicine and Biology, vol 131. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3752-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3752-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3754-6

  • Online ISBN: 978-1-4684-3752-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics