Skip to main content

Uniform Elongational Flow of Molten Polymers

  • Chapter
Book cover Rheology

Abstract

In this review we shall concentrate on uniaxial elongational flows which are uniform (i.e. spatially homogeneous) and may be time-dependent. We trace briefly the development of the subject from the study by Trouton (1906) through a series of errors and their correction to the beginnings of the modern period around 1950. The “early modern period”, which is characterised by the development of techniques for measuring the elongational viscosity of soft solid and highly viscous molten polymers and by the derivation of theoretical expressions for elongational viscosity, may conveniently be divided from the “late modern period” by the review of Dealy (1971). In this latter period we find that experimental techniques have been refined and their limits pushed further and further, revealing new facets of behaviour for the theorists to explain. There has also been a growing interest in unsteady flows of well-defined character both by experimenters and by theorists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • D. Acierno, G. Titomanlio and G. Marrucci (1972), Internal viscosity effects on transient elongational behaviour of dilute ‘polymer solutions (elastic dumbbell model), Trans. Soc. Rheol., 16, 651–667.

    Article  Google Scholar 

  • D. Acierno, F. P. La Mantia, G. Marrucci and G. Titomanlio (1976a), A nonlinear viscoelastic model with structure-dependent relaxation times. I. Basic formulation, J. Non-Newtonian Fluid Mech., 1, 125–146.

    Article  Google Scholar 

  • D. Acierno, F. P. La Mantia, G. Marrucci, G. Rizzo and G. Titomanlio (1976b), A nonlinear viscoelastic model with structure-dependent relaxation times. II. Comparison with LDPE transient stress results, J. Non-Newtonian Fluid Mech., 1, 147–157.

    Article  CAS  Google Scholar 

  • D. Acierno, F. P. La Mantia and G. Marrucci (1977a), A nonlinear viscoelastic model with structure-dependent relaxation times. III. Comparison with LD polyethylene creep and recovery data, J. Non-Newtonian Fluid Mech., 2, 271–280.

    Article  CAS  Google Scholar 

  • D. Acierno, F. P. La Mantia, B. de Cindio and L. Nicodemo (1977b), Transient shear and elongational data for polyisobutylene melts, Trans. Soc. Rheol., 21, 261–271.

    Article  CAS  Google Scholar 

  • P. K. Agrawal, W.-K. Lee, J. M. Lorntson, C. I. Richardson, K. F. Wissbrun and A. B. Metzner (1977), Rheological behaviour of molten “polymers in shearing and in extensional flows, Trans. Soc. Rheol., 21, 355–379.

    Article  CAS  Google Scholar 

  • G. Astarita and L. Nicodemo (1970), Extensional flow behaviour of polymer solutions, Chem. Eng. J., 1, 57–66.

    Article  Google Scholar 

  • R. L. Ballman (1965), Extensional flow of polystyrene melt, Rheol. Acta, 4, 137–140.

    Article  CAS  Google Scholar 

  • R. B. Bird and T. W. Spriggs (1965), Elongational viscosity of viscoelastic fluids, Phys. Fluids, 8, 1390–1392.

    Article  Google Scholar 

  • R. B. Bird, M. W. Johnson Jr. and J. F. Stevenson (1970), Molecular theories of elongational viscosity, Proc. 5th Int. Congr. Rheol., 4, 159–168.

    CAS  Google Scholar 

  • F. Bueche (1955), Visco elasticity of polymethylmethacrylates, J. Appl. Phys., 26, 738–749.

    Article  CAS  Google Scholar 

  • J. M. Burgers (1935), in First Report on Viscosity and Plasticity, Ch. II, Academy of Sciences, Amsterdam, 73–109.

    Google Scholar 

  • P. J. Carreau (1972), Rheological equations from molecular network theories, Trans. Soc. Rheol., 16, 99–127.

    Article  CAS  Google Scholar 

  • H. Chang and A. S. Lodge (1972), Comparison of rubberlike-liquid theory with stress-growth data for elongation of a low-density branched polyethylene melt, Rheol. Acta, 11, 127–129.

    Article  CAS  Google Scholar 

  • I.-J. Chen, G. E. Hagler, L. E. Abbott, D. C. Bogue and J. L. White (1972), Interpretation of tensile and melt spinning experiments on LDPE and HDPE, Trans. Soc. Rheol., 16, 473–494.

    Article  CAS  Google Scholar 

  • F. N. Cogswell (1968), The rheology of polymer melts under tension, Plast. Polym., 36, 109–111.

    CAS  Google Scholar 

  • F. N. Cogswell (1969), Tensile deformations in molten polymers, Rheol. Acta, 8, 187–194.

    Article  CAS  Google Scholar 

  • F. N. Cogswell (1978), Converging flow and stretching flow: a compilation, J. Non-Newtonian Fluid Mech., 4, 23–38.

    Article  CAS  Google Scholar 

  • B. D. Coleman and W. Noll (1962), Steady extension of incompressible simple fluids, Phys. Fluids, 5, 840–843.

    Article  Google Scholar 

  • J. M. Dealy (1971), Extensional flow of non-Newtonian fluids — a review, Polym. Eng. Sci., 11, 433–445.

    Article  CAS  Google Scholar 

  • J. M. Dealy (1978), Extensional rheometers for molten polymers: a review, J. Non-Newtonian Fluid Mech., 4, 9–21.

    Article  CAS  Google Scholar 

  • M. M. Denn (1977), Extensional flows: experiment and theory, in The Mechanics of Viscoelastic Fluids ed. R. S. Rivlin, AMD-Volume 22, ASME, New York, 101–125.

    Google Scholar 

  • M. M. Denn (1980), Continuous drawing of liquids to form fibers, Ann. Revs. Fluid Mech., 12 (in press).

    Google Scholar 

  • M. M. Denn and G. Marrucai (1971), Stretching of viscoelastic liquids, AIChE J., 17, 101–103.

    Article  CAS  Google Scholar 

  • C. D. Denson (1980), Polymer processing, Proc. VIIIth Int. Congr. Rheol., Naples.

    Google Scholar 

  • M. Doi and S. F. Edwards (1979), Dynamics of concentrated polymer systems. Part 4. Rheological properties, J. Chem. Soc. Faraday Trans. II, 75, 38–54.

    Google Scholar 

  • S. English (1924), The effect of composition on the viscosity of glass, Part II, J. Soc. Glass Technol. Trans., 8, 205–248.

    CAS  Google Scholar 

  • J. D. Goddard (1979), Review of Elongational Flows (Pétrie, 1979a), J. Fluid Mech., 95, 787–790.

    Article  Google Scholar 

  • W. Goldberg, B. Bernstein and G. Lianis (1969), The exponential extension rate history, comparison of theory with experiment, Int. J. Nonlinear Mech., 4, 277–300.

    Article  Google Scholar 

  • R. Greco, G. Titomanlio and G. Marrucci (1975), Transient elongational viscosity of dumbbell suspensions at high rates of stretching, Rheol. Acta, 14, 127–134.

    Article  Google Scholar 

  • Y. Ide and J. L. White (1978), Experimental study of elongational flow and failure of polymer melts, J. Appl. Polym. Sci., 22, 1061–1079.

    Article  CAS  Google Scholar 

  • E. Jenckel (1937), The effect of cooling on the properties of glasses anaplastics, Zeitschr. Elektrochem., 43, 796–806.

    CAS  Google Scholar 

  • E. Jenckel and K. Uberreiter (1938), On polystyrene glasses of various chain lengths, Zeitschr. Phys. Chem. A, 182, 361–383.

    Google Scholar 

  • V. A. Kargin and T. I. Sogolova (1949a), Development of a method of study of the true processes of flow in polymers, Zh. Fiz. Khim., 23, 540–550.

    CAS  Google Scholar 

  • V. A. Kargin and T. I. Sogolova (1949b), Investigation of the process of viscous flow of polyisobutyIene, Zh. Fiz. Khim., 23, 551–562.

    CAS  Google Scholar 

  • H. M. Laun and H. Miinstedt (1976), Comparison of the elongational behaviour of a polyethylene melt at constant stress and constant strain rate, Rheol. Acta, 15, 517–524.

    Article  CAS  Google Scholar 

  • H. M. Laun and H. Miinstedt (1978), Elongational behaviour of a LDPE melt. I. Strain rate and stress dependence of viscosity and recoverable strain in the steady state. Comparison with shear data. Influence of interfacial tension, Rheol. Acta, 17, 415–425.

    Article  CAS  Google Scholar 

  • A. I. Leonov and G. V. Vinogradov (1965), On the rheological relationships in the motion of an elastic-viscous medium in the field of a constant longitudinal velocity gradient, Dokl. Phys. Chem., 162, 442–445 (translation of Dokl. Akad. Nauk. SSSR, 162, 869–872).

    Google Scholar 

  • H. R. Lillie (1931), Viscosity of glass between the strain point and the melting temperature, J. Amer. Ceram. Soc., 14, 502–511.

    Article  CAS  Google Scholar 

  • A. S. Lodge (1964), Elastic liquids, Academic Press.

    Google Scholar 

  • A. S. Lodge and J. Meissner (1973), Comparison of network theory predictions with stress/time data in shear and elongation for a low-density polyethylene melt, Rheol. Acta, 12, 41–47.

    Article  CAS  Google Scholar 

  • A. S. Lodge, J. B. McLeod and J. A. Nohel (1978), A nonlinear singularly perturbed Volterra integro differential equation occurring in polymer rheology, Proc. Roy. Soc. Edinburgh, 80A, 99–137.

    Article  Google Scholar 

  • C. W. Macosko and J. M. Lorntson (1973), The rheology of two blow moulding polyethylenes, SPE Tech. Papers, 19, 461–467.

    CAS  Google Scholar 

  • H. Markovitz and B. D. Coleman (1964), Incompressible second order fluids, Adv. Appl. Mech., 8, 69–101.

    Article  Google Scholar 

  • G. Marrucci (1970), Prediction of polystyrene melt tensile behaviour, Ind. Eng. Chem. Fundam., 10, 514.

    Article  Google Scholar 

  • G. Marrucci and J. J. Hermans (1979), Non-linear visco elasticity of concentrated polymeric liquids (submitted for publication).

    Google Scholar 

  • W. R. Marshall Jr. and R. L. Pigford (1947), The application of differential equations to chemical engineering problems, University of Delaware Press.

    Google Scholar 

  • J. Meissner (1969), A rheometer for investigation of deformation-mechanical properties of plastic melts under defined extensional straining, Rheol. Acta, 8, 78–88.

    Article  CAS  Google Scholar 

  • J. Meissner (1971), Elongational properties of polyethylene melts, Rheol. Acta, 10, 230–242.

    Article  CAS  Google Scholar 

  • J. Meissner (1972), Development of a universal extensional rheometer for the uniaxial extension of polymer melts, Trans. Soc. Rheol., 16, 405–420.

    Article  CAS  Google Scholar 

  • J. Meissner, T. Raible and S. E. Stephenson (1979), The rotary clamp and its relevance in extensional rheometry, Society of Rheology, 50th Annual Meeting, paper 34–1, Abstracts booklet, p. 69.

    Google Scholar 

  • S. Middleman (1969), Transient response for an elastomer to large shearing and stretching deformations, Trans. Soc. Rheol., 13, 123–139.

    Article  CAS  Google Scholar 

  • W. Minoshima, J. L. White and J. E. Spruiell (1979), Experimental investigation of the influence of molecular weight distribution on the rheological properties of polypropylene melts, University of Tennessee, Polymer Science and Engineering Report, No. 126.

    Google Scholar 

  • K. Missaghi and C. J. S. Petrie (1980), Stretching the Jeffreys liquid: stressing, creep and recovery, Proc. VIIIth Int. Congr. Rheol., Naples.

    Google Scholar 

  • H. Mlinstedt (1975), Viscoelasticity of polystyrene melts in tensile creep experiments, Rheol. Acta, 14, 1077–1088.

    Article  Google Scholar 

  • H. Mlinstedt (1979), New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample, J. Rheol., 23, 421–436.

    Article  Google Scholar 

  • H. Münstedt and H. M. Laun (1979), Elongational behaviour of an LDPE melt. II. Transient behaviour in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties, Rheol. Acta, 18, 492–504.

    Article  Google Scholar 

  • H. Nitschmann and J. Schrade (1948), On the fibre-forming ability of non-Newtonian liquids, Helv. Chim. Acta, 31, 297–319.

    Article  CAS  Google Scholar 

  • S. T. J. Peng (1972), Extensional flow of bulk polymers, JPL Quart. Rev., 2, 40–45. (See also S. T. J. Peng and R. F. Landel (1973), Rheol. Acta, 13, 548–556.)

    CAS  Google Scholar 

  • C. J. S. Petrie (1976), Some problems in unsteady flow for co-rotational rheological models, VIIth Int. Congr. Rheol., 446–447.

    Google Scholar 

  • C. J. S. Petrie (1977), On stretching Maxwell models, J. Non-Newtonian Fluid Mech., 2, 221–253.

    Article  CAS  Google Scholar 

  • C. J. S. Petrie (1979a), Elongational Flows, Pitman Publishing, London.

    Google Scholar 

  • C. J. S. Petrie (1979b), Measures of deformation and convected derivatives, J. Non-Newtonian Fluid Mech., 5, 147–176.

    Article  Google Scholar 

  • C. J. S. Petrie (1979c), A review of theoretical predictions for uniaxial elongation, Society of Rheology, 50th Annual Meeting, paper 30–6, Abstracts booklet, p. 61.

    Google Scholar 

  • N. Phan-Thien (1978), A nonlinear network viscoelastic model, J. Rheol., 22, 259–283.

    Article  CAS  Google Scholar 

  • N. Phan-Thien and R. I. Tanner (1977), A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech., 2, 353–365.

    Article  Google Scholar 

  • A. C. Pipkin and R. I. Tanner (1977), Steady non-vis come trie flows of viscoelastic liquids, Ann. Revs. Fluid Mech., 9, 13–32.

    Article  CAS  Google Scholar 

  • B. V. Radushkevich, V. D. Fikhman and G. V. Vinogradov (1968), Uniaxial uniform-speed elongation of high-elasticity liquids (of low-molecular polyisobutylene as an example), Dokl. Phys. Chem., 180, 358–361. (Translation of Dokl. Akad. Nauk SSSR, 180, 404–407.)

    Google Scholar 

  • T. Raible, A. Demarmels and J. Meissner (1979), Stress and recovery maxima in LDFE melt elongation, Polymer Bulletin, 1, 397–402.

    Article  CAS  Google Scholar 

  • M. Reiner (1946), The coefficient of viscous traction. Amer. J. Math., 68, 672–680.

    Article  Google Scholar 

  • M. Reiner and A. Freudenthal (1938), Failure of a material showing creep. (A dynamical theory of strength), Proc. 5th Int. Congr. Appl. Mech., 228–233.

    Google Scholar 

  • R. S. Rivlin (1948), Large elastic deformations of isotropic materials. II. Some uniqueness theorems for pure, homogeneous deformation, Phil. Trans. Roy. Soc., A240, 491–508.

    Google Scholar 

  • G. Ronca (1977), Cooperative diffusion in a temporary network, Rheol. Acta, 16, 581–597.

    Article  Google Scholar 

  • R. Roscoe (1965), The steady elongation of elasto-viscous liquids, Brit. J. Appl. Phys., 16, 1567–1571.

    Article  Google Scholar 

  • M. T. Shaw (1976), Extensional viscosity of melts using a programmable tensile testing machine, VIIth Int. Congr. Rheol., 304–305.

    Google Scholar 

  • J. F. Stevenson and R. B. Bird (1971), Elongational viscosity of nonlinear elastic dumbbell suspensions, Trans. Soc. Rheol., 15, 135–145.

    Article  Google Scholar 

  • J. F. Stevenson (1972), Elongational flow of polymer melts, AIChE J., 18, 540–547.

    Article  CAS  Google Scholar 

  • V. H. Stott (1925), The viscosity of glass, J. Soc. Glass Technol. Trans., 9, 207–225.

    CAS  Google Scholar 

  • R. I. Tanner (1969), Comparative studies of some simple viscoelastic theories, Trans. Soc. Rheol., 12, 155–182.

    Article  Google Scholar 

  • R. I. Tanner and R. L. Ballman (1969), Prediction of polystyrene melt tensile behaviour, Ind. Eng. Chem. Fundam., 8, 588–589.

    Article  CAS  Google Scholar 

  • R. I. Tanner (1970), Prediction of polystyrene melt tensile behaviour, Ind. Eng. Chem. Fundam., 9, 688.

    Article  CAS  Google Scholar 

  • F. T. Trouton (1906), On the coefficient of viscous traction and its relation to that of viscosity, Proc. Roy. Soc, A77, 426–440.

    Google Scholar 

  • G. V. Vinogradov, A. I. Leonov and A. N. Prokunin (1969), On uniaxial extension of an elasto-viscous cylinder, Rheol. Acta, 8, 482–490.

    Article  Google Scholar 

  • G. V. Vinogradov, B. V. Radushkevich and V. D. Fikhman (1970a), Extension of elastic liquids: polyisobutylene, J. Polym. Sci., A2, 8, 1–17.

    Google Scholar 

  • G. V. Vinogradov, V. D. Fikhman, B. V. Radushkevich and A. Ya Malkin (1970b), Viscoelastic and relaxation properties of a polystyrene melt in axial extension, J. Polym. Sci., A2, 8, 657–678.

    Google Scholar 

  • G. V. Vinogradov, V. D. Fikhman and B. V. Radushkevich (1972), Uniaxial extension of polystyrene at true constant stress, Rheol. Acta, 11, 286–291.

    Article  CAS  Google Scholar 

  • M. H. Wagner (1976), Analysis of time-dependent non-linear stress growth data for shear and elongational flow of a low-density branched polyethylene melt, Rheol. Acta, 15, 136–142.

    Article  CAS  Google Scholar 

  • M. H. Wagner (1978), A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt, J. Non-Newtonian Fluid Mech., 4, 39–55.

    Article  CAS  Google Scholar 

  • M. H. Wagner, T. Raible and J. Meissner (1979), Tensile stress overshoot in uniaxial extension of a LDPE melt, Rheol. Acta, 18, 427–428.

    Article  CAS  Google Scholar 

  • J. L. White (1964), Dynamics of viscoelastic fluids, melt fracture, and the rheology of fiber spinning, J. Appl. Polym. Sci., 8, 2339–2357.

    Article  CAS  Google Scholar 

  • J. L. White (1976), Dynamics and structure development during melt spinning of fibers, J. Soc. Rheol. Japan, 4, 137–148.

    CAS  Google Scholar 

  • J. L. White (1978), Experimental study of elongational flow of polymer melts, Appl. Polym. Symp., 33, 31–47.

    CAS  Google Scholar 

  • J. L. White (1979), Personal communication.

    Google Scholar 

  • M. Yamamoto (1957), The viscoelastic properties of network structure. II. Structural viscosity, J. Phys. Soc. Japan, 12, 1148–1158.

    Article  CAS  Google Scholar 

  • L. J. Zapas and T. Craft (1965), Correlation of large longitudinal deformations with different strain histories, J. Res. Nat. Bur. Stand., 69A, 541–546.

    Google Scholar 

  • A. Ziabicki (1976), Fundamentals of fibre formation. The science of fibre spinning and drawing, Wiley-Interscience, London.

    Google Scholar 

  • A. Ziabicki (1980), Fibers, Proc. VIIIth Int. Congr. Rheol., Naples.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Petrie, C.J.S., Dealy, J.M. (1980). Uniform Elongational Flow of Molten Polymers. In: Astarita, G., Marrucci, G., Nicolais, L. (eds) Rheology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3740-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3740-9_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3742-3

  • Online ISBN: 978-1-4684-3740-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics