Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 55))

  • 144 Accesses

Abstract

Most of the materials presented in these lectures are taken from a series of publications listed in Refs. 1–4. The first three lectures are dealing with generalized WKB methods. In the last lecture, we discuss the physical origin of the instability associated with a constant B field in a classical Yang-Mills field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. M. Bitar and S. J. Chang, Phys. Rev. D17, 486 (1978), K. M. Bitar and S. J. Chang, Phys. Rev. D18, 435 (1978).

    MathSciNet  ADS  Google Scholar 

  2. S.J. Chang, “An Example of Quantum Tunneling in Molecular Physics”, Physica 96A, 183 (1979). The above volume of Physica was also published separately as a book “Themes in Contempory Physics”, North-Holland Publ. Comp. f Amsterdam 1979.

    ADS  Google Scholar 

  3. K.M. Bitar, S.J. Chang, G. Grammer and J.D. Stack, “A mechanism for destruction of order in the 2-d nonlinear a model” Preprint, 111-(TH)-78-17.

    Google Scholar 

  4. S.J. Chang and N. Weiss, “Instability of constant Yang-Mills fields”, Phys.Rev. D (in press).

    Google Scholar 

  5. T. Banks, C.M. Bender, and T.T. Wu, Phys. Rev. D8, 3346 (1973) T. Banks and C.M. Bender, Phys. Rev. D8, 3366 (1973).

    MathSciNet  ADS  Google Scholar 

  6. S. Coleman, Phys. Rev. D15, 2929 (1977); l6, 1248 (E) (1977); C.G. Callan and S. Coleman, ibid 16, 1762 (1977).

    Google Scholar 

  7. J.L. Gervais and B. Sakita, Phys.Rev. D16, 3507 (1977).

    MathSciNet  ADS  Google Scholar 

  8. N.K. Nielsen and P. Olesen, Nuclear Physics B144, 376 (1978).

    Article  MathSciNet  Google Scholar 

  9. There are several earlier and interesting works in this area. See, e.g. J.E. Mandula, Phys. Letters, 67B, 175 (1977); M. Magg, Phys. Letters 78B, 481 (1978); P. Sikivie and N. Weiss, Phys.Rev. Letters 40, 1411 (1978); Phys.Rev. D18, 3809 (1978). See also Ref [8].

    Google Scholar 

  10. See e.g. L.D. Landau and E.M. Lifshitz, Quantum Mechanics - Non-Relativistic Theory, Pergamon Press, New York, 1965, Chapter XV.

    MATH  Google Scholar 

  11. This is analogous to what Mandula found in the case of an electric source. See Ref.[9].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Chang, SJ. (1980). Semiclassical Methods in Field Theories. In: Rühl, W. (eds) Field Theoretical Methods in Particle Physics. NATO Advanced Study Institutes Series, vol 55. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3722-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3722-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3724-9

  • Online ISBN: 978-1-4684-3722-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics