Lower Marginal Dimensionality. X-Ray Scattering from the Smectic-A Phase of Iquid Crystals

  • Jens Als-Nielsen
  • J. D. Litster
  • R. J. Birgeneau
  • M. Kaplan
  • C. R. Safinya
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 50)


In the previous chapter we have seen that the critical fluctuations associating a second order phase transition, expressed in terms of a response function X(q) directly measurable by scattering spectroscopy, may be treated in a self-consistent and correct way by simple mean field theory if the dimensionality exceeds a certain marginal dimensionality d*. In particular we stressed that d* depends on the volume in reciprocal space available to the critical fluctuations, and systems with d ≤ d* can indeed be studied experimentally. In this chapter we shall discuss the opposite limit: That the fluctuations are so strong that they prevent the onset of true long range order at all. Let us look upon an example. We postulate an ordered crystalline state in d dimensions and we want to calculate the mean squared fluctuations <u2>. If <u2> diverges in an infinite sample the postulated long range order cannot take place. First, consider a sinusoidal fluctuation with wavevector \(\vec{q}\) and amplitude \({{\vec{u}}_{q}}\). For simplicity let us assume that the medium is elasrically isotropic.


Liquid Crystal Line Profile Range Order Pair Correlation Function Nematic Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.G. de Gennes, “The Physics of Liquid Crystals” (Clarendon/ Oxford, 1974)Google Scholar
  2. 2.
    R.E. Peierls, Helv. Phys. Acta 7, Suppl. 11, 8l (1934)Google Scholar
  3. 3.
    L.D. Landau, in “Collected Papers of L.D. Landau” edited “by D. ter Haar (Gordon and Breach, New York, 1965), p. 209Google Scholar
  4. 4.
    A. Caille, C.R. Acad. Sc. Paris 274, B891 (1972)Google Scholar
  5. 5.
    H.-J. Mikeska and H. Schmidt, J. Low Temp. Phys. 2, 371 (1970).ADSCrossRefGoogle Scholar
  6. 5a.
    Y. Imry and L. Günther, Phys. Rev. B3, 3939 (1971)ADSGoogle Scholar
  7. 5b.
    Y. Imry, Proceedings from Third Int. Inst, in Surface Science (1977)Google Scholar
  8. 6.
    U. Bonse and M. Hart, Appl. Phys. Lett. 8, 238 (1965)ADSCrossRefGoogle Scholar
  9. 7.
    I.S. Gradshteyn and I.M. Ryzhik, “Table of Integrals, Series and Products” (Academic Press, New York, 1965)Google Scholar
  10. 8.
    H. Birecki, R. Schaetzig, F. Rondelez and J.D. Litster, Phys. Rev. Lett. 36, 1370 (1976). See also Fig. 10 in Litster’s proceedings of this conference.ADSCrossRefGoogle Scholar
  11. 9.
    J.D. Litster, J. Ais-Nielsen, R.J. Birgeneau, S.S. Dana, D. Davidov, F. Garcia-Golding, M. Kaplan, C.R. Safinya and R. Schaetzing, to be published in Colleque Bordeaux issue of J. de Physique 1979.Google Scholar
  12. 10.
    B. Warren, “X-ray Diffraction”, Addison-Wesley 1973.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Jens Als-Nielsen
    • 1
  • J. D. Litster
    • 2
  • R. J. Birgeneau
    • 2
  • M. Kaplan
    • 2
  • C. R. Safinya
    • 2
  1. 1.Risø National LaboratoryRoskildeDenmark
  2. 2.Dept. of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations