Random Anisotropy Spin-Glass

  • Erling Pytte
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 50)


In this seminar some recent work on a new type of spin-glass will be discussed.1–4 The model consists of a conventional Heisenberg model together with a random uniaxial anisotropy term,
$$\mathcal{H} = - \sum {{J}_{{ij}}}{\mkern 1mu} {{S}_{i}}{\mkern 1mu} \bullet {{S}_{j}} - D\sum {{({{\hat{n}}_{i}}{\mkern 1mu} \bullet {{S}_{i}})}^{2}}$$
Here n i is a unit vector denoting the orientation of the uniaxial anisotropy axis on the i th site. The orientation of the axes is assumed to be random with no correlation between the axes on different sites. In general, a model with m spin components in d dimensions will be considered.


Spin Glass Heisenberg Model Uniaxial Anisotropy Stable Fixed Point Random Field Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

List of References

  1. 1.
    R. A. Pelcovits, E. Pytte and J. Rudnick, Phys. Rev. Lett., 40, 476 (1978).ADSCrossRefGoogle Scholar
  2. 2.
    R. A. Pelcovits, Phys. Rev. B19, 465 (1979).ADSGoogle Scholar
  3. 3.
    E. Pytte, Phys. Rev. B18, 5046 (1978).ADSGoogle Scholar
  4. 4.
    J. Rudnick, to be published.Google Scholar
  5. 5.
    R. Harris, M. Plischke and M. J. Zuckermann, Phys. Rev. Lett. 31, 160 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    J. J. Rhyne, S. J. Pickart and H. A. Alperin, Phys. Rev. Lett. 29, 1562 (1972).ADSCrossRefGoogle Scholar
  7. 7.
    R. W. Cochrane, R. Harris and M. Plischke, J. Non-C Solids 15, 239 (1974)ADSCrossRefGoogle Scholar
  8. 7a.
    R. W. Cochrane, R. Harris, M. Plischke, D. Zobin and M. J. Zuckerman, J. Phys. F 5, 763 (1975).ADSCrossRefGoogle Scholar
  9. 8.
    R. W. Cochrane, R. Harris and M. J. Zuckermann, Physics Reports 48, 1 (1978).ADSCrossRefGoogle Scholar
  10. 9.
    B. Y. Boucher, J. Physique 37, L345 (1976)CrossRefGoogle Scholar
  11. 9a.
    B. Y. Boucher, Phys. Stat. Sol. A10, 179 (1977).Google Scholar
  12. 10.
    T. R. McGuire, to be published.Google Scholar
  13. 11.
    J. M. D. Coey and S. von Molnar, J. Phys. (Paris) 39, L327 (1978)Google Scholar
  14. 11a.
    T. R. McGuire and J. M. D. Coey, to be published; S. Von Molnar, C. N. Guy, R. Gambino and T. R. McGuire, to be published. See also J. M. D. Coey, J. Appl. Phys. 49, 1646 (1978).ADSCrossRefGoogle Scholar
  15. 12.
    See for example, A. P. Young, Phase Transitions in Low-Dimensional Systems at this Study Institute and references listed therein.Google Scholar
  16. 13.
    M. C. Chi and R. Alben, J. Appl. Phys. 48, 2987 (1977).ADSCrossRefGoogle Scholar
  17. 14.
    R. Harris, S. H. Sung and M. J. Zuckermann, IEEE Trans. Mag-14, 725 (1978).ADSCrossRefGoogle Scholar
  18. 14a.
    R. Harris and S. H. Sung, J. Phys. F8, L299 (1978).ADSCrossRefGoogle Scholar
  19. 15.
    M. C. Chi and T. Egami, J. Appl. Phys., March (1979) and references listed therein.Google Scholar
  20. 16.
    E. Pytte, unpublished.Google Scholar
  21. 17.
    N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).ADSCrossRefGoogle Scholar
  22. 18.
    S. F. Edwards and P. W. Anderson, J. Phys. F5, 965 (1975).ADSCrossRefGoogle Scholar
  23. 19.
    For a more detailed discussion see for example, E. Pytte and J. Rudnick, Phys. Rev. B19, April 1 (1979).Google Scholar
  24. 20.
    J. H. Chen and T. C. Lubensky, Phys. Rev. B16, 2106 (1977).ADSGoogle Scholar
  25. 21.
    S. Alexander and T. C. Lubensky, Phys. Rev. Lett. 42 125 (1979).ADSCrossRefGoogle Scholar
  26. 22.
    A. A. Migdal, Sov. Phys. JETP 42, 413 and 743 (1976)ADSGoogle Scholar
  27. 22a.
    A. M. Polyakov Phys. Lett. B59, 79 (1975)MathSciNetADSGoogle Scholar
  28. 22b.
    D. R. Nelson and R. A. Pelcovits, Phys. Rev. B16, 2191 (1977).ADSGoogle Scholar
  29. 23.
    G. Grinstein, Phys. Rev. Lett., 37, 944 (1976)ADSCrossRefGoogle Scholar
  30. 23a.
    A. Aharony, Y. Imry and S. Ma, Phys. Rev. Lett. 37, 1364 (1977).ADSCrossRefGoogle Scholar
  31. 24.
    A. Aharony, Phys. Rev. B12, 1038 (1975).ADSGoogle Scholar
  32. 25.
    Based on recent computer simulations, M. J. Zuckermann, private communication.Google Scholar
  33. 26.
    D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975)ADSCrossRefGoogle Scholar
  34. 26a.
    S. Kirkpatrick and D. Sherrington, Phys. Rev. B17, 4384 (1978).ADSGoogle Scholar
  35. 27.
    J. R. L. de Alameida and D. J. Thouless, J. Phys. A11, 983 (1978).ADSGoogle Scholar
  36. 28.
    E. Pytte and J. Rudnick, Phys. Rev. B19, April 1 (1979).Google Scholar
  37. 29.
    A. B. Harris, T. C. Lubensky and J. -H Chen, Phys. Rev. Lett. 36, 415 (1976).ADSCrossRefGoogle Scholar
  38. 30.
    For T > Tc X1 and x 2 become degenerate. It is interesting to note that this susceptibility differs from that considered by R. Fisch and A. B. Harris, Phys. Rev. Lett. 38, 785 (1977) but is equivalent to XEA discussed by K. Binder at this Study Institute.Google Scholar
  39. 31.
    D. J. Thouless and J. R. L. Alameida, to be published.Google Scholar
  40. 32.
    A. Khurana and J. A. Hertz, Bull. Am. Phys. Soc. 24, 304 (1979).Google Scholar
  41. 33.
    J. R. L. de Alameida, R. C. Jones, J. M. Kosterlitz and D. J. Thouless, J. Phys. C11, L 871 (1978).Google Scholar
  42. 34.
    A. J. Bray and M. A. Moore, Phys. Rev. Lett. 41, 1068 (1978).ADSCrossRefGoogle Scholar
  43. 35.
    A. Aharony, to be published.Google Scholar
  44. 36.
    Y. Imry and S. Ma, Phys. Rev. Lett. 35, 1399 (1975).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Erling Pytte
    • 1
  1. 1.IBM ResearchYorktown HeightsUSA

Personalised recommendations