Fluctuations and Freezing in a One-Dimensional Liquid: Hg3-δAsF6

  • J. D. Axe
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 50)


Many of the papers of this conference deal quite properly with systems at their critical dimensionality, d. (See, for example, the contributions of Young, Villain, Als-Nielsen, Litster, and Weeks.) In such systems the competing forces between organization and disorder are nearly equally balanced and the analysis of the resulting situation requires some subtlety. Not surprisingly, the situation is somewhat simplified when the dimensionality falls below d. For ordinary translational ordering of fluids (i.e. crystallization), d*=2. In this paper we explore the properties of certain quasi-one-dimensional systems, which since they are effectively below d, resist the conventional crystalline order until abnormally low temperatures, and assume instead a state which we liken to a 1-dimensional liquid.


Range Order Bragg Peak Diffuse Scattering Reciprocal Lattice Vector Chain Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. D. Brown, B. D. Cutforth, C. G. Davies, R. J. Gillespie, P. R. Ireland, and J. E. Verkris, Can. J. Chem. 52, 791 (1974).CrossRefGoogle Scholar
  2. 2.
    C. K. Chiang, R. Spal, A. Denenstein, A. J. Heeger, N. D. Miro, and A. G. MacDiarmid, Solid State Commun. 22, 293 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    A. J. Schultz, J. M. Williams, N. D. Miro, A. G. MacDiarmid, and A. J. Heeger, Inorg. Chem., March, 1978.Google Scholar
  4. 4.
    J. M. Hastings, J. P. Pouget, G. Shirane, A. J. Heeger, N. D. Miro, and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1484 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    V. J. Emery and J. D. Axe, Phys. Rev. Lett. 40, 1507 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    This approximation was first described in a systematic way by D. J. Scalapino, Y. Imry, and P. Pincus, Phys. Rev. B 11, 2042 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    Neutron scattering measurements have verified these predictions. (Private communication, I. U. Heilmann, G. Shirane, and J. D. Axe.)Google Scholar
  8. 8.
    S. F. Edward and A. Lenard, J. Math. Phys. 3 778 (1962);ADSCrossRefGoogle Scholar
  9. 8a.
    N. Gupta and B. Sutherland, Phys. Rev. A 14, 790 (1976).ADSCrossRefGoogle Scholar
  10. 9.
    See, for example, S. A. Brazovskii and I. E. Dzyaloshinskii. Zh. Eksp. Teor. Fiz. 71, 2338 (1976). (English transi., Sov. Phys. JETP 44, 1233 (1977));Google Scholar
  11. 9a.
    A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974).ADSCrossRefGoogle Scholar
  12. 10.
    R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 11, 3424 (1975);MathSciNetADSCrossRefGoogle Scholar
  13. 10a.
    A. Luther, Phys. Rev. B 14, 2153 (1976).ADSCrossRefGoogle Scholar
  14. 11.
    I.U. Heilmann, J.M. Hastings, G. Shirane, A.J. Heeger and A.G. MacDiarmid, Solid State Coram. 29, 469 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. D. Axe
    • 1
  1. 1.Physics DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations