The Roughening Transition

  • John D. Weeks
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 50)


The idea that there could be a “roughening” of the interface of a crystal in equilibrium with its vapor at a particular temperature TR was first suggested by Burton and Cabrera (1949) and further developed in a now classic article by Burton, Cabrera and Frank (BCF) (1951). Representing the crystal surface by a two-dimensional (2D) Ising model they suggested that there would be large fluctations in the surface structure at the Ising model’s critical temperature TC(2D) and a disappearance of the nucleation barrier to crystal growth. Jackson (1953, 1967) further developed and extended these ideas to the case of melt growth and showed that the morphology and growth mechanism of a wide class of crystals could be understood by assuming they were grown above or below the appropriate surface roughening temperature.


Partition Function Ising Model Planar Model Universality Class Interface Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burton, W. K., and Cabrera, N., 1949, Disc. Faraday Soc. 5, 33.CrossRefGoogle Scholar
  2. Burton, W. K., Cabrera, N., and Frank, F. C., 1951, Phil. Trans Roy. Soc. London 243A, 299.MathSciNetADSGoogle Scholar
  3. Buff, F. P., Lovett, R. A., and Stillinger, F. H., 1965, Phys. Rev. Lett. 15, 621.ADSCrossRefGoogle Scholar
  4. Chui, S. T., and Weeks, J. D., 1976, Phys. Rev. B14, 4978.ADSGoogle Scholar
  5. Chui, S. T., and Weeks, J. D., 1978, Phys. Rev. Lett. 40, 733.ADSCrossRefGoogle Scholar
  6. Cramer, H., 1946, Mathematical Methods of Statistics, Princeton University Press, Chap. 24.zbMATHGoogle Scholar
  7. de Gennes, P. G., 1971, Faraday Symposium #5 on Liquid Crystals, London, p. 16.Google Scholar
  8. Gilmer, G. H., and Bennema, P., 1972, J. Appl. Phys. 43, 1347.ADSCrossRefGoogle Scholar
  9. Gilmer, G. H., and Jackson, K. A., 1977, in Crystal Growth and Materials, North Holland, New York, p. 79.Google Scholar
  10. Hohenberg, P. C., and Halperin, B. I., 1977, Rev. Mod. Phys. 49, 435.ADSCrossRefGoogle Scholar
  11. Jackson, K. A., 1958, in Liquid Metals and Solidification, ASM, Cleveland, p. 174.Google Scholar
  12. Jackson, K. A., 1967, in Prog. in Solid State Chemistry, ed. by H. Reiss, Pergamon Press, New York, vol. 4, p. 53.Google Scholar
  13. Jackson, K. A., and Miller, C. E., 1977, J. Crystal Growth 40, 169.ADSCrossRefGoogle Scholar
  14. Jose, J. V., Kadanoff, L. P., Kirkpatrick, S., and Nelson, D. R., 1977, Phys. Rev. B16, 1217.ADSGoogle Scholar
  15. Knops, H. J. F., 1977, Phys. Rev. Lett 39, 776.MathSciNetADSCrossRefGoogle Scholar
  16. Kosterlitz, J. M., and Thouless, D. J., 1973, J. Phys. C6, 1181.ADSGoogle Scholar
  17. Kosterlitz, J. M., 1974, J. Phys. C7, 1046.ADSGoogle Scholar
  18. Lambeth, D. N., and Stanley, H. E., 1975, Phys. Rev. B12, 5302.ADSGoogle Scholar
  19. Leamy, H. J., Gilmer, G. H., and Jackson, K. A., 1975, in Surface Physics of Materials, Academic, New York, Vol. 1, p. 121.Google Scholar
  20. Leamy, H. J., and Gilmer, G. H., 1974, J. Crystal Growrth 24, 499.ADSCrossRefGoogle Scholar
  21. Lieb, E. H., 1967, Phys. Rev. Lett. 18, 1046.ADSCrossRefGoogle Scholar
  22. Lieb, E. H., and Wu, F. Y., 1972, in Phase Transitions and Critical Phenomena, edited by C. Domb, Academic, London, Vol. 1.Google Scholar
  23. Lighthill, M. J., 1959, Introduction to Fourier Analysis and Generalized Functions, Cambridge University Press, Cambridge, p. 68.Google Scholar
  24. Ma, S. K., 1976, Modern Theory of Critical Phenomena, Benjamin, W.A., Reading.Google Scholar
  25. Miyashita, S. H., Nishimori, H., Kuroda, A., and Suzuki, M., 1978, Prog. Theoret. Physics 60, 1669.ADSCrossRefGoogle Scholar
  26. Mùller-Krumbhaar, H., 1977, in 1976 Crystal Growth and Materials, North Holland, New York, p. 79.Google Scholar
  27. Nelson, D. R., and Kosterlitz, J. M., 1977, Phys. Rev. Lett. 39, 120.ADSCrossRefGoogle Scholar
  28. Ohta, T., and Kawasaki, K., 1978, Prog. Theor. Phys. 60, 365.ADSCrossRefGoogle Scholar
  29. Saito, Y., 1978, Z. Phys. B32, 75.ADSGoogle Scholar
  30. Shugard, W. J., Weeks, J. D., and Gilmer, G. H., 1978, Phys. Rev. Lett. 31, 549.Google Scholar
  31. Swendsen, R. H., 1977, Phys. Rev. B15, 5421.ADSGoogle Scholar
  32. van Beijeren, H., 1975, Commun. Math. Phys. 40, 1.ADSCrossRefGoogle Scholar
  33. van Beijeren, H., 1977, Phys. Rev. Lett. 38, 993.ADSCrossRefGoogle Scholar
  34. Villain, J., 1975, J. Phys. (Paris) 36, 581.CrossRefGoogle Scholar
  35. Weeks, J. D., Gilmer, G. H., and Leamy, H. J., 1973, Phys. Rev. Lett. 31, 549.ADSCrossRefGoogle Scholar
  36. Weeks, J. D., 1977, J. Chem. Phys. 67, 3106.ADSCrossRefGoogle Scholar
  37. Weeks, J. D., and Gilmer, G. H., 1979, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice, vol. 40, p. 157.CrossRefGoogle Scholar
  38. Zittartz, J., 1978, Z. Phys. B31, 63, 79, 89.MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • John D. Weeks
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations