Skip to main content

The Dislocation Theory of Melting: History, Status, and Prognosis

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 50))

Abstract

Of all the physical properties of a crystal, its ultimate transition to the liquid state, at a sufficiently high temperature, is one of the most mysterious. It is surprising that no widely-accepted theory of melting has yet emerged, but the same is true of the liquid state itself, and it could well be that a full understanding of both problems will come simultaneously. The aim of this brief review is a commentary on one particular melting model: the dislocation theory of melting. According to this, melting occurs through the sudden catastrophic proliferation of dislocations. The model usually assumes that this implies acceptance of a picture of the liquid state in which the latter is essentially a crystal filled to saturation with dislocations, though it might later transpire that this is not an absolutely necessary consequence of dislocation mediated melting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. F. Mott and R.W. Gurney, Trans. Faraday Soc. 35, 364 (1939).

    Article  Google Scholar 

  2. W. L. Bragg, Symposium on Internal Stresses (Institute of Metals, London, 1947) p. 221.

    Google Scholar 

  3. R.M.J. Cotterill and M. Doyama, Phys. Rev. 145, 465 (1966).

    Article  ADS  Google Scholar 

  4. W. Shockley, l’Etat Solide (Inst. International de Physique Solvay, Brussels, 1952) p. 431.

    Google Scholar 

  5. A. Ookawa, J. Phys. Soc. Japan 15, 70 (1960)

    Article  Google Scholar 

  6. S. Mizushima, J. Phys. Soc. Japan 15, 70(1960)

    Article  Google Scholar 

  7. D. Kuhlmann-Wilsdorf, Phys. Rev. 140, A1599 (1965)

    Article  ADS  Google Scholar 

  8. S.F. Edwards, Polymer 17, 933(1976)

    Google Scholar 

  9. R.M.J. Cotterill (to be published)

    Google Scholar 

  10. R.M.J. Cotterill and L.B. Pedersen, Solid State Communications 10, 439(1972)

    Google Scholar 

  11. R.M.J. Cotterill, in High Temperature Materials Phenomena, ed. J.G. Rasmussen (Polyteknisk Forlag, 1972) p. 285

    Google Scholar 

  12. R.M.J. Cotterill, W. Damgaard Kristensen, and E.J. Jensen, Phil. Mag. 30, 245 (1974)

    Article  ADS  Google Scholar 

  13. R.M.J. Cotterill, Phil. Mag. 32, 1283 (1975)

    Article  ADS  Google Scholar 

  14. R.K. Crawford, Bull. Amer. Phys. Soc. 24, 385(1979)

    Google Scholar 

  15. R.K. Crawford (to be published).

    Google Scholar 

  16. R.M.J. Cotterill and J. Klæstrup Kristensen, Phil. Mag. 36, 453 (1977).

    Article  ADS  Google Scholar 

  17. R.M.J. Cotterill, Physica Scripta (in the press).

    Google Scholar 

  18. R.M.J. Cotterill, Phys. Rev. Letters (in the press).

    Google Scholar 

  19. R.M.J. Cotterill, E.J Jensen, W. Damgaard Kristensen, R. Paetsch, and P. O. Esbjørn, J. de Physique 36, C2–35 (1975).

    Google Scholar 

  20. S. F. Edwards and M. Warner (to be published).

    Google Scholar 

  21. F.C. Frank and J.W. Steeds, in The Physics of Metals 2, ed. P.B. Hirsch (Cambridge University Press, 1975) p. 68.

    Google Scholar 

  22. J.J. Gilman, J. Appl. Phys. 44, 675 (1973).

    Article  ADS  Google Scholar 

  23. M.F. Ashby and J. Logan, Scripta Metall. 7, 513(1973).

    Article  Google Scholar 

  24. V.F. Weisskopf, Trans. New York Acad. Sci. 38, 202 (1977).

    Google Scholar 

  25. J.M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 118. (1973).

    Article  Google Scholar 

  26. B.I. Halperin and D.R. Nelson, Phys. Rev. Letters 41, 121 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  27. D. Frenkel and J. P. McTague, Bull. Amer. Phys. Soc. 24, 362 (1979).

    Google Scholar 

  28. M. Toda, J. Phys. Soc. Japan 22, 431 (1967).

    Article  Google Scholar 

  29. R.M.J. Cotterill, Physica Scripta 18, 37(1978).

    Article  ADS  Google Scholar 

  30. A. Seeger and A. Kochendörfer, Z. Phys. 130, 321 (1951).

    Article  ADS  MATH  Google Scholar 

  31. F.A. Lindemann, Z. Phys. 11, 609 (1910).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Cotterill, R.M.J. (1980). The Dislocation Theory of Melting: History, Status, and Prognosis. In: Riste, T. (eds) Ordering in Strongly Fluctuating Condensed Matter Systems. NATO Advanced Study Institutes Series, vol 50. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3626-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3626-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3628-0

  • Online ISBN: 978-1-4684-3626-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics