Two-Dimensional Solids and Their Interaction with Substrates

  • Jacques Villain
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 50)


Adsorbed monolayers on an ideal substrate may exhibit solid phases incommensurable with the substrate. Near the transition to a commensurable solid state (C-I transition) the incommensurable phase can be described as an array of walls separating nearly registered domains.

After a review of earlier theories, the properties of the incommensurable phase are studied near the C-I transition. In the case of an anisotropic substrate, a continuous transition is predicted both at T=0 and T≠0, but with different critical behaviour. For a hexagonal substrate a first order transition is predicted except possibly at T=0.


Adsorbed Layer Critical Behaviour Reciprocal Lattice Vector Incommensurable Phase Commensurable Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. AUBRY (1978) in “Non linear structure and dynamics in condensed matter”. Springer Verlag, Berlin.Google Scholar
  2. P. BAK. D. MUKAMEL, J. VILLAIN, K. WENTOWSKA (1979). Phys. Rev. B 19, 1610.ADSCrossRefGoogle Scholar
  3. P. BAK, J. TIMONEN (1978), J. Phys. C 11 4901ADSCrossRefGoogle Scholar
  4. P. BAK, V.J. EMERY (1976) Phys. Rev. Lett. 36, 978ADSCrossRefGoogle Scholar
  5. J.E. BERTHOLD, D.J. BISHOP, J.D. REPPY (1977) Phys. Rev. Lett 39, 348ADSCrossRefGoogle Scholar
  6. F. BLOCH (1932) Z. Phys. 74, 295ADSzbMATHCrossRefGoogle Scholar
  7. A.D. BRUCE, R.A. COWLEY (1978) J. Phys. C 11, 3577, 3591, 3609ADSCrossRefGoogle Scholar
  8. E. BREZIN, J. ZINN-JUSTIN (1976) Phys. Rev. Lett. 36, 691ADSCrossRefGoogle Scholar
  9. M.D. CHINN, S.C. FAIN (1977) Phys. Rev. Lett. 39, 146ADSCrossRefGoogle Scholar
  10. H. CONRAD, G. ERTL, J. J. Küppers (1978) Surface Science 76, 323ADSCrossRefGoogle Scholar
  11. J.G. DASH (1975) “Films on Solid Surfaces” (Acad. Press, New York)Google Scholar
  12. F.C. FRANK, J.H. VAN DER MERWE (1949) Proc. Roy Soc. London, 198, 205ADSzbMATHCrossRefGoogle Scholar
  13. J. DRIEDEL (1978) “Extended defects in Materials”. Trieste lectures, to he published.Google Scholar
  14. P.C. DE GENNES (1968) Solid State Comm. 6, 163ADSCrossRefGoogle Scholar
  15. H. GODFRIN, G. FROSSATI, D. THOULOUZE, M. CHAPELLIER, W.G. CLARK (1978) J. Physique 39, C6–287Google Scholar
  16. P.G. DE GENNES (1968) J. Chem. Phys. 48, 2257ADSCrossRefGoogle Scholar
  17. M. GODRON, J. VILLAIN (1979) Phys. C. to he published.Google Scholar
  18. B.I. HALPERIN, D.E. NELSON (1978) Phys. Rev. Lett. 41, 121MathSciNetADSCrossRefGoogle Scholar
  19. M. HUBER, J. OUDAR (1975) Surface Science 47, 605ADSCrossRefGoogle Scholar
  20. B. JANCOVICI (1967) Phys. Rev. Lett. 19, 20ADSCrossRefGoogle Scholar
  21. H.J.F. KNOPS (1977) Ohys Rev. Letters 39, 766MathSciNetADSCrossRefGoogle Scholar
  22. J.V. JOSE, L.P. KADANOFF, S. KIRKPATRICK. D.R. NELSON (1977) Phys. Rev. B 16, 1217ADSCrossRefGoogle Scholar
  23. J.M. KOSTERLITZ (1974) J. Phys. C 7, 1046ADSCrossRefGoogle Scholar
  24. J.M. KOSTERLITZ, D.J. THOULESS (1973) J. Phys. C 6, 1181ADSCrossRefGoogle Scholar
  25. L.D. LANDAU, E.M. LIFSHITZ (1959) “Theory of Elasticity” (Pergamon, London)Google Scholar
  26. Y. LAHRER (1978) J. Chem. Phys. 68, 257Google Scholar
  27. K.H. LAU (1978) Solid State Comm. 28, 757ADSCrossRefGoogle Scholar
  28. K.H. LAU, W. KOHN (1977) Surface Science 65, 607ADSCrossRefGoogle Scholar
  29. E.H. LIEB, F.Y. WU (1972) in “Phase transitions and critical phenomena”, Vol. 1, P 361, Edited by C. Domb and M.S. Green, Acad. press, LondonGoogle Scholar
  30. M. LUBAN, D. MUKAMEL, S. SHTRIKMAN (1976) Phys. Rev. A 10, 360ADSCrossRefGoogle Scholar
  31. W.L. MC MILLAN (1976) Phys. Rev. B 14, 1496ADSCrossRefGoogle Scholar
  32. W.L. MC MILLAN (1977) Phys. Rev. B 16, 4655ADSCrossRefGoogle Scholar
  33. F.R.N. NABARRO (1967) “Theory of Crystal dislocations” Clarendon Press, OxfordGoogle Scholar
  34. L. NEEL (1944) Cah. Phys. 25, 1.Google Scholar
  35. D.R. NELSON, J.M. KOSTERLITZ (1977) Phys. Rev. Lett. 39, 1201ADSCrossRefGoogle Scholar
  36. A.D. NOVACO, J.P. MC TAGUE (1977) Phys. Rev. Lett. 38, 1286, J. Physique 38, C4–116CrossRefGoogle Scholar
  37. V.L. POKROVSKII, A.L. TALAPOV (1979) Phys. Rev. Lett. 42, 65ADSCrossRefGoogle Scholar
  38. A.M. POLYAKOV (1975) Phys. Letters 59 B, 79Google Scholar
  39. A.C. SCOTT, F.Y.F. CHU, D.W.MC LAUGHLIN (1973) Proc. IEEE 61, 1443MathSciNetADSCrossRefGoogle Scholar
  40. C.G. SHAW, S.C. FAIN, M.D. CHINN (1978) Phys. Rev. Lett. 41, 955ADSCrossRefGoogle Scholar
  41. H. SHIBA (1978) Tech. Rep. I.S.S.P. 1940 (Tokyo)Google Scholar
  42. D. SPANJAARD, D.L. MILLS, M.T. BEAL-MONOD (1978) J. Physique 39, C6–293 and preprintGoogle Scholar
  43. H.E. STANLEY, T.A. KAPLAN (1966) Phys. Rev. Lett. 17, 913MathSciNetADSCrossRefGoogle Scholar
  44. G. THEODOROU, T.M. RICE (1978) Phys. Rev. B 18, 2840ADSCrossRefGoogle Scholar
  45. A. THOMY, X. DUVAL (1969) J. Chimie Phys. 66, 1966Google Scholar
  46. J.A. VENABLES, P.S. SHABES-RETCHKIMAN (1977) J. Phys. 38, C40–105Google Scholar
  47. J. VILLAIN (1975) J. Physique 36, L-173Google Scholar
  48. J. VILLAIN (1978) Phys. Rev. Lett. 41, 36ADSCrossRefGoogle Scholar
  49. F. WEGNER (1967) Z. Phys. 206, 465ADSCrossRefGoogle Scholar
  50. A.P. YOUNG (1978) J. Phys. C 11, L. 453ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Jacques Villain
    • 1
  1. 1.Laboratoire de Diffraction NeutroniqueDepartment de Recherche FondamentaleGrenoble CedexFrance

Personalised recommendations