Skip to main content

Solitons in the Theory of Guided Lightwaves

  • Chapter
Fiber Optics

Abstract

It is well-known that wavepackets launched in a nonlinear medium will, in general, become broadened and distorted as a result of the nonlinearity.1,2 Nevertheless, in certain circumstances it is possible to obtain stable propagating solutions to nonlinear equations (referred to as “solitons”). In general, analytic solutions of this type are known to exist only for a few selected equations with a single spatial degree of freedom. Solitons retain their identity in much the same way as the normal modes of a linear system; they even emerge unscathed after “colliding” with each other. The mathematical nature of the equations involved and their associated solitons is well-exemplified by the two cases of interest in the present paper, namely, the nonlinear Schroedinger and Korteweg de Vries equations. Their principal characteristics are summarized briefly in the Appendix.

Research supported by Solid State Sciences Division, RADC (AFSC) under Contract No. F19628-78-C-0089.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, G. B. Whitham, “Linear and Nonlinear Waves” (John Wiley and Sons, N.Y., 1973) and references therein.

    Google Scholar 

  2. S. A. Akhamanov et al, in “Laser Handbook”, F. Arecchi and E. Schulz-Dubois, eds. ( North-Holland, Amsterdam, 1972 ).

    Google Scholar 

  3. See, for example, “Fundamentals of Optical Fiber Communications”, M. Barnoski, etc. (Academic, N.Y., 1975 ).

    Google Scholar 

  4. A. Yariv, J. Opt. Soc. Am. 66, 301 (1975);

    Article  Google Scholar 

  5. A. Gover, C. P. Lee and A. Yariv, J. Opt. Soc. Am. 66, 306 (1975);

    Article  ADS  Google Scholar 

  6. A. Yariv, Appl. Phys. Lett. 28, 88 (1976).

    Article  ADS  Google Scholar 

  7. S. P. Yukon and B. Bendow, Optics Lett. 2, 75 (1978).

    Article  ADS  Google Scholar 

  8. N. Tzoar and J. I. Gersten, in “Optical Props. Highly Transparent Solids”, S. S. Mitra and B. Bendow, eds. ( Plenum, N.Y., 1975 ).

    Google Scholar 

  9. M. Jain and N. Tzoar, J. Appl. Phys., 1978 (in press); N. Tzoar and M. Jain, this volume.

    Google Scholar 

  10. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 142 (1973).

    Article  ADS  Google Scholar 

  11. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).

    Article  ADS  Google Scholar 

  12. S. Kawakami and J. Nishizawa, IEEE Trans. on Microwave Theory MTT-16, 814 (1968).

    Google Scholar 

  13. N. Rosen and P. M. Morse, Phys. Rev. 42, 210 (1932).

    Article  ADS  Google Scholar 

  14. M. S. Sodha and A. K. Ghatak, “Inhomogeneous Optical Waveguides” (Plenum Press, N.Y., 1977 ).

    Google Scholar 

  15. See, for example, L. D. Faddeyev, J. Math. Phys. 4, 72 (1963).

    Article  Google Scholar 

  16. I. Kay and H. E. Moses, J. Appl. Phys. 27, 1503 (1956).

    Article  ADS  MATH  Google Scholar 

  17. C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).

    Article  ADS  MATH  Google Scholar 

  18. S. P. Yukon and B. Bendow, to be published.

    Google Scholar 

  19. P. D. Lax, Comm. Pure and Appl. Math. 21, 467 (1968).

    MathSciNet  MATH  Google Scholar 

  20. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Studies in Appl. Math. 53, 249 (1974).

    MathSciNet  Google Scholar 

  21. V. E. Zakharov and A. B. Shabat, Soviet Physics JEPT 34, 62 (1972).

    MathSciNet  ADS  Google Scholar 

  22. A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23, 171 (1973).

    Article  ADS  Google Scholar 

  23. V. E. Zakharov and A. B. Shabat, Soviet Physics JETP 37, 823 (1973).

    ADS  Google Scholar 

  24. R. Hirota, Lexture Notes in Math. 515 ( Springer-Verlag, Berlin, 1976 ).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bendow, B., Yukon, S.P. (1979). Solitons in the Theory of Guided Lightwaves. In: Bendow, B., Mitra, S.S. (eds) Fiber Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3492-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3492-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3494-1

  • Online ISBN: 978-1-4684-3492-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics