Skip to main content

Nonlinear Effects in Optical Fibers: Application to the Fabrication of Active and Passive Devices

  • Chapter
Fiber Optics

Abstract

The development of high-quality low-loss optical fibers has resulted in the demonstration of several novel optical devices based on nonlinear effects that occur in silica fiber material. The successful operation of these devices has proven feasible in spite of the fact that the effective nonlinearity of silica is much smaller than materials commonly used in nonlinear optic experiments. The weak nonlinearity of silica is more than compensated by the capability of optical fiber to confine light to a small cross-sectional area without incurring damage and to maintain such confinement over large distances, resulting in high power densities in the fiber core and long interaction lengths. These favourable properties of optical fibers permit the observation of several different nonlinear effects. Stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS), and three-wave mixing have all been observed using both pulsed1, 2, 3 and continuous4, 5, 6 pump beams. Light induced birefringence in an optical fiber has also been detected. 7 More recently, a different type of nonlinear effect, light-induced refractive index changes in Ge-doped optical fiber has been discovered.8 Unlike the other nonlinearities in fiber the origin of this effect has not yet been established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. P. Ippen and R. H. Stolen, “Stimulated Brillouin Scattering in Optical Fibers”, Appl. Phys. Letts., 21, p. 539–541, Dec. 1972.

    Article  ADS  Google Scholar 

  2. R. H. Stolen, E. P. Ippen and A. R. Tynes, “Raman Oscillation in Glass Optical Waveguides”, Appl. Phys. Letts. 30, p. 62–64, Jan. 1972.

    Article  ADS  Google Scholar 

  3. R. H. Stolen, J. E. Bjorkholm and A. Ashkin, “Phase-Matched Three-Wave Mixing in Silica Fiber Optical Wave-guides”, Appl. Phys. Lett., 24, p. 308–310, April 1974.

    Article  ADS  Google Scholar 

  4. K. O. Hill, B. S. Kawasaki and D. C. Johnson, “cw Brillouin Laser”, Appl. Phys. Lett., 28, p. 608–609, May 1976.

    Article  ADS  Google Scholar 

  5. K. O. Hill, B. S. Kawasaki and D. C. Johnson, “Low-Threshold cw Raman Laser”, Appl. Phys. Letts., 29, p. 181–183, August 1976.

    Article  ADS  Google Scholar 

  6. K. O. Hill, D. C. Johnson, B. S. Kawasaki and R. I. MacDonald, “cw Three-Wave Mixing in Single-Mode Optical Fibers”, Journal Appl. Phys., to be published Oct. 1978.

    Google Scholar 

  7. R. H. Stolen and A. Ashkin, “Optical Kerr Effect in Glass Waveguide”, Appl. Phys. Lett., 22, p. 294–296, March 1973.

    Article  ADS  Google Scholar 

  8. K. O. Hill, Y. Fujii, D. C. Johnson and B. S. Kawasaki, “Photosensitivity in Optical Fiber Waveguides: Application to Reflection Filter Fabrication”, Appl. Phys. Lett., 32, p. 647649, May 1978.

    Google Scholar 

  9. D. C. Johnson, K. O. Hill and B. S. Kawasaki, “Brillouin Optical-Fiber Ring Oscillator Design”, Radio Science, 12, p.519–528, July-August 1977.

    Google Scholar 

  10. F. P. Kapron, N. F. Borrelli and D. B. Keck, “Birefringence in Dielectric Optical Waveguides”, IEEE J. of Quantum Electronics, QE-8, p. 222–225, Feb. 1972.

    Google Scholar 

  11. R. H. Stolen, V. Ramaswamy and P. Kaiser, “Linear Polarization in Elliptically-Clad Birefringent, Single-Mode Fibers”, Topical Meeting on Integrated and Guided Wave Optics, Salt Lake City, Utah, Jan. 16–18, 1978, post-deadline paper PD1–1.

    Google Scholar 

  12. J. Pelous and R. Vacher, “Thermal Brillouin Scattering Crystalline and Fused Quartz from 20 to 1000 C”, Solid State Communications, 18, p. 657–661, 1976.

    Article  ADS  Google Scholar 

  13. V. Vali and R. W. Shorthill, “Fiber Ring Interferometer”, Appl. Opt. 15, p. 1099–1100, May 1976.

    Article  ADS  Google Scholar 

  14. K. O. Hill, D. C. Johnson, and B. S. Kawasaki, “cw Generation of Multiple Stokes and Anti-Stokes Brillouin-Shifted Frequencies”, Appl. Phys. Lett. 29, p. 185–187, Aug. 1976.

    Article  ADS  Google Scholar 

  15. B. S. Kawasaki, D. C. Johnson, Y. Fujii and K. O. Hill, “Bandwidth-Limited Operation of a Mode-Locked Brillouin Parametric Oscillator”, Appl. Phys. Lett., 32, p. 429–431, April 1978.

    Article  ADS  Google Scholar 

  16. R. V. Johnson and J. H. Marburger, “Relaxation Oscillations in Stimulated Raman and Brillouin Scattering”, Phys. Rev. A, 4, p. 1175–1182, Sept. 1971.

    Article  ADS  Google Scholar 

  17. V. N. Lugovoi, “On the Theory of a Nonlinear Optical Resonator”, Opt. Acta (6B), 24, p. 743–756, July 1977.

    Article  ADS  Google Scholar 

  18. R. G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering”, Appl. Opt., 11, p. 2489–2494, Nov. 1972.

    Article  ADS  Google Scholar 

  19. R. K. Jain, C. Lin, R. H. Stolen, W. Pleibel and P. Kaiser, “A High-Efficiency Tunable cw Raman Oscillator”, Appl. Phys. Lett. 30, p. 162–164, Feb. 1977.

    Article  ADS  Google Scholar 

  20. R. H. Stolen, ‘Raman and Raman Gain Spectroscopy in Optical Fibers“, Proceedings of the 3rd International Conference on Light Scattering in Solids, 1976, p. 656–662.

    Google Scholar 

  21. D. C. Johnson, K. O. Hill, B. S. Kawasaki and D. Kato, “Tunable Raman Fiber-Optic Laser”, Electronics Letters, 13, p. 53–55, Jan. 1977.

    Article  Google Scholar 

  22. R. H. Stolen, C. Lin and R. K. Jain, “A Time-DispersionTuned Fiber Raman Oscillator”, Appl. Phys. Letts., 30, p. 340–342, April 1977.

    Article  ADS  Google Scholar 

  23. R. K. Jain, C. Lin, R. H. Stolen and A. Ashkin, “A Tunable Multiple Stokes cw Fiber Raman Oscillator”, Appl. Phys. Lett. 31, p. 89–90, July 1977.

    Article  ADS  Google Scholar 

  24. C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker and W. G. French, “Near-Infrared Sources in the 1–1. 3 µm Region by Efficient Stimulated Raman Emission in Glass Fibers”, Optics Communications, 20, p. 426–428, March 1977.

    Article  ADS  Google Scholar 

  25. K. O. Hill, B. S. Kawasaki and D. C. Johnson, “Continuous-Wave Fiber-Optic Raman Laser”, 1976 Annual Meeting of the Optical Society of America, Tucson, Arizona, Oct. 18–21, 1976, paper ThF12, J. Opt. Soc. of Am., 66, p. 1114, 1977.

    ADS  Google Scholar 

  26. K. O. Hill, B. S. Kawasaki and D. C. Johnson, “Nonlinearities in Optical Fibers”, 1977 Annual Meeting of the Opt. Soc. of Am., Toronto, Ontario, Oct. 10–14, 1977, Invited Paper TuAl, J. of the Opt. Soc. of Am. 67, p. 1361, 1977.

    ADS  Google Scholar 

  27. D. C. Johnson, K. O. Hill and B. S. Kawasaki, “cw Optical-Fiber Raman Oscillator Employing a Two-mirror Resonator Configuration”, to be published Appl. Opt., 1 Oct. 1978.

    Google Scholar 

  28. R. H. Stolen and C. Lin, “Recent Advances in Tunable Fiber-Raman Lasers”, Tenth International Quantum Electronic Conference, Atlanta, Georgia, May 29 - June 1, 2978, J. Opt. Soc. of Am., 68, p.633, Invited Paper C-8, 1978.

    Google Scholar 

  29. B. S. Kawasaki, K. O. Hill, D. C. Johnson and Y. Fujii, “Narrowband Bragg Reflectors in Optical Fibers”, Opt. Letts., 3, p. 66–68, Aug. 1978.

    Article  ADS  Google Scholar 

  30. Matsuhara and K. O. Hill, “Optical-Waveguide Band-Rejection Filters: Design”, Appl. Opt., 13, p. 2886–2888, 1974.

    Article  ADS  Google Scholar 

  31. B. S. Kawasaki and K. O. Hill, “Low-Loss Access Coupler For Multimode Optical Fiber Distribution Networks”, Appl. Opt., 16, p. 1794–1795, July 1977.

    Article  ADS  Google Scholar 

  32. K. O. Hill, B. S. Kawasaki and D. C. Johnson, “Efficient Power Combiner for Multiplexing Multiple Sources to Single-Fiber Optical Systems”, Appl. Phys. Lett., 31, p. 740–742, Dec. 1977.

    Article  ADS  Google Scholar 

  33. B. S. Kawasaki, K. O. Hill, D. C. Johnson and A. U. Tenne-Sens, “Full-Duplex Transmission Link Over Single-Strand Optical Fiber”, Opt. Letts., 1, p. 107–108, Sept. 1977.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hill, K.O., Kawasaki, B.S., Johnson, D.C., Fujii, Y. (1979). Nonlinear Effects in Optical Fibers: Application to the Fabrication of Active and Passive Devices. In: Bendow, B., Mitra, S.S. (eds) Fiber Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3492-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3492-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3494-1

  • Online ISBN: 978-1-4684-3492-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics