Taxes in Unicells, Especially Protozoa

  • P. Couillard
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)


Protozoa form a group of unicellular, (acellular), prokaryotes at the animal end of a broad spectrum of organisms, the other extremity being occupied by unicellular algae such as Desmids and Diatoms. Borderline groups, such as the fungus-like Mycetozoa (Myxomycetes) or the green flagellates lie in the no-man’s land, forever to be disputed by protozoologists and phycologists.


Action Spectrum Algal Symbiont Ciliary Membrane Positive Phototaxis Phototactic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, J. (1966). Chemotaxis in Bacteria. Science 153: 708–715.PubMedCrossRefGoogle Scholar
  2. Adler, J. (1976). The Sensing of chemicals by Bacteria. Scient. Am. 234 (4): 40–47.CrossRefGoogle Scholar
  3. Adler, J. and Dahl, M.M. (1967). A method for measuring the motility of bacteria and for comparing random and non-random motility. J. Gen. Microbiol. 46: 161–173.PubMedGoogle Scholar
  4. Arronet, N.I. (1973). Motile Muscle and cell Models. Consultants Bureau, New York.Google Scholar
  5. Berg, H.C. (1975). Bacterial behaviour. Nature 254: 389–392.PubMedCrossRefGoogle Scholar
  6. Berg, H.C. and Anderson, R.A. (1973). Bacteria swim by rotating their flagellar filaments. Nature 245: 380–382.PubMedCrossRefGoogle Scholar
  7. Bovee, E.C. and Jahn, T.L. (1972). A theory of Piezoelectric activity and Ion movements on the Relation of Flagellar Structures and their movements to the phototaxis of Euglena. J. Theor. Biol. 35: 259–276.PubMedCrossRefGoogle Scholar
  8. Buetow, D.E. (1968). The Biology of Euglena. Vol. 1. Academic Press, New York.Google Scholar
  9. Carlile, M.J. (ed.) (1976). Primitive sensory and communicatives systems: The Taxes and Tropisms of Microorganisms and cells. Academic Press, New York.Google Scholar
  10. Chang, T.M.S., Macintosh, F.C. and Mason, S.G. (1966). Semipermeable aqueous microcapsules I. Preparation and properties. Can. J. Physiol. Pharmacol. 44: 115–128.PubMedCrossRefGoogle Scholar
  11. Checcucci, A. (1976). Molecular Sensory Physiology of Euglena. Nature 63: 412–417.Google Scholar
  12. Checcucci, A., Colombetti, G., Ferrara, R. and Lenci, F. (1976). Action Spectra for Photoaccumulation of green and colorless Euglenai Evidence for Identification of Receptor pigments. Photochem. Photibiol. 23: 51–54.CrossRefGoogle Scholar
  13. de Pamphilis, M.L. and Adler, J. (1971). Fine Structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. J. Bact. 105: 384–385.Google Scholar
  14. Diehn, B., Feinleib, M., Haupt, W., Hildebrandt, E., Lenci, F. and Nultsch, W. (1977). Terminology of behavioural responses of motile microorganisms. Photochem. Photobiol. 26: 559–560.CrossRefGoogle Scholar
  15. Dodge, J.D. and Crawford, R.M. (1969). Observations on the fine structure of the eyespot and associated organelles in the dinoflagellate Glenodinium foliacum. J. Cell. Sci. 5: 479–493.PubMedGoogle Scholar
  16. Doetsch, R.N. (1966). Some speculations accounting for the movement of bacterial flagella. G. Theor. Biol. 11: 411–417.CrossRefGoogle Scholar
  17. Dogiel, V.A. (1929). Die Sogenannte “Konkrement vacuole” des Infusorien als eine Statozyste betrachtet. Arch. Protistenk. 58: 319–348.Google Scholar
  18. Doroszewski, M. (1970). Response of the eiliate Dileptus to mechanical stimuli. Acta. Protozool. 7: 353–362.Google Scholar
  19. Duncan, C.J. (1977). A note on the evolution of the Transducer mechanism of the Vertebrate retinal rod. Experientia 33: 1310.PubMedCrossRefGoogle Scholar
  20. Eckert, R. (1972). Bioelectric control of ciliary activity. Science 176: 473–481.PubMedCrossRefGoogle Scholar
  21. Eckert, R. and Naitoh, Y. (1972). Bioelectric control of locomotion in the ciliates. J. Protozool. 19: 237–243.PubMedGoogle Scholar
  22. Fauré-Frémiet, E. (1948). Le rythme de marée du Strombidium oeulativm Gruber. Bull. Biol. Fr. Belg. 82: 3–23.PubMedGoogle Scholar
  23. Ferrara, R. and Banchetti, R. (1976). Effect of Streptomycin on the Structure and Function of the Photoreceptor apparatus of Euglena gracilis. J. Exp. Zool. 198: 393–402.PubMedCrossRefGoogle Scholar
  24. Forget, J. (1977). La cinétique de la vacuole contractile chez Amoeba proteus: Effets de la lumière panchromatique à diverses intensités. Thèse M.Se. Sciences Biologiques, Université de Montréal.Google Scholar
  25. Fraenkel, G.S. and Gunn, D.L. (1961). The Orientation of Animals. Doner, New York.Google Scholar
  26. Giese, A.C. (1967). Effects of Radiation upon Protozoa, in Chen, T.T. (ed.) Research in Protozoology, Vol. 2, pp. 256–267. Pergamon, New York.Google Scholar
  27. Giese, A.C. (1973). Blepharisma. The biology of a Light-Sensitive Protozoan. Stanford University Press, Stanford, Calif.Google Scholar
  28. Grell, K.F. (1973). Protozoology. Springer Verlag, Berlin.Google Scholar
  29. Greuet, 0. C1968). Organisation ultra-structurale de l’ocelle de deux Péridiniens Warnowiidae, Erythropsis pavillardi Kofoid et Swezy et Warnowia pulchra Schiller. Protistologica 4: 209–230.Google Scholar
  30. Gruber, A. (1884). Die Protozoen des Hapens von Genus. Nova Acta Acad. Leopold 46: 475–539.Google Scholar
  31. Halldal, P. (1970). Photobiology of Microorganisms. Wiley, London.Google Scholar
  32. Holt, E.B. and Lee, F.S. (1901). The theory of phototactic response. Amer. J. Physiol. 4: 460–468.Google Scholar
  33. Huang, B. and Pitelka, D.R. (1973). The Contractile process in the ciliate Stentor coeruleus I. The role of microtubules and Filaments. J. Cell. Biol. 57: 704–728.PubMedCrossRefGoogle Scholar
  34. Jahn, T.I. and Bovee, E.C. (1968). Locomotive and motile response in Euglena. Chap. 3, pp. 45–108 in Buetow, D.E. The Biology of Euglena, vol. 1. Acad. Press, New York.Google Scholar
  35. Jennings, H.S. (1905). Behaviour of the lower Organisms. Indiana University Press, Bloomington, 1976. (Reprint).Google Scholar
  36. Jeon, K.W. and Bell, L.G.E. (1965). Chemotaxis in large, free- living Amoeba. Exp. Cell. Res. 38: 536–555.PubMedCrossRefGoogle Scholar
  37. Kasakashian, S.J., Karakashian, M.W. and Rudzinska, M.A. (1968). Electron microscopic observations on the symbiosis of Paramecium bursaria and its intracellular algae. J. Protozool. 15: 113–128.Google Scholar
  38. Koshland, D.E. (1974). The Chemotactic response in Bacteria, in Jaenicke, L. (ed.) Biochemistry of Sensory functions. Springer Verlag, New York.Google Scholar
  39. Koshland, D.E. Jr. (1977). A response Regulator Model in a simple Sensory System. Science 196: 1055–1063.PubMedCrossRefGoogle Scholar
  40. Kung, C. and Eckert, R. (1972). Genetic modifications of Electric properties in an Excitable membrane. Proc. nat. Acad. Sei. U.S.A. 69: 93–97.CrossRefGoogle Scholar
  41. Larsen, S.H., Reader, R.W., Kort, E.N., Tso, W.W. and Adler, J. (1974). Change in direction of flagellar rotation is the base of the chemotactic response in Escheridria coli. Nature, Lond. 249: 74–77.CrossRefGoogle Scholar
  42. Leedale, G.F. (1967). Euglenoid Flagellates. Prentice Hall, Englewood clifs, N.J.Google Scholar
  43. Loeb, J. (1918). Forced movements, Tropisms and Animal Conduct. Dover Publications, New York, ( Reprint, 1973 ).CrossRefGoogle Scholar
  44. Marsot, P. and Couillard, P. (1972). La reaction phagocytaire chez Amoeba proteus I. Phagocytose de cellules dissociées d’Hydre d’eau douce. Can. J. Zool. 50: 745–749.CrossRefGoogle Scholar
  45. Mast, S.O. (1906). Light reactions in Lower organisms I. Stentor coeruleus. J. Exp. Zool. 3: 359–399.CrossRefGoogle Scholar
  46. Mast, S.O. (1932). Localized stimulation, transmission of impulses and the Nature of response in Amoeba. Physiol. Zool. 5: 1–15.Google Scholar
  47. Mast, S.O. (1911). Light and the behaviour of Organisms. Wiley, New York and London.CrossRefGoogle Scholar
  48. Miyake, A. (1974). Conjugations in the Ciliate Blepharisma: A possible Model System for Biochemistry of Sensory Mechanisms, in Jaenicke, L. (ed.) Biochemistry of Sensory Functions. Springer-Verlag, New York, pp. 299–305.Google Scholar
  49. Mornin, L. and Francis, D. (1967). The Fine Structures of Nematodinium armaturrij a naked dinoflagellate. J. Microscopie 6: 959–972.Google Scholar
  50. Mussill, M. and Jarosch, R. (1972). Bacterial Flagella Rotate and do not Contract. Protoplasma 75: 465–469.PubMedCrossRefGoogle Scholar
  51. Naitoh, Y. (1974). Bioelectric basis of behaviour in Protozoa. Am. Zool. 14: 885–893.Google Scholar
  52. Naitoh, Y. and Kaneko, H. (1972). Reactivated Triton-Extracted models of Paramecium: Modification of ciliary movement by Cations. Science 176: 523–524.CrossRefGoogle Scholar
  53. Ogura, A. and Takahashi, K. (1976). Artificial deciliation causes base of calcium, dependent responses in Paramecium. Nature, Lond. 264: 170–172.CrossRefGoogle Scholar
  54. Ordal, G.W. and Fields, R.B. (1977). A Biochemical mechanisms for Bacterial Chemotaxis. J. Theor. Biol. 68: 491–500.PubMedCrossRefGoogle Scholar
  55. Penard, E. (1917). Le genre Loxodes. Revue Suisse Zool. 25: 453–489.Google Scholar
  56. Perez-Miravete, A. (1973). Behaviour of Microorganisms. Plenum, New York.CrossRefGoogle Scholar
  57. Piccinni, E. and Omodeo, P. (1975). Photoreceptors and Phototactic programs in Protista. Boll. Ital. Zool. 42: 57–79.CrossRefGoogle Scholar
  58. Piccinni, E., Albergoni, V. and Coppellotti, O. (1975). At Pase Activity in Flagella from Euglena gracilis. Localization of the Enzymes and Effects of Detergents. J. Protozool. 22: 331–335.PubMedGoogle Scholar
  59. Platt, J.R. (1961). Bioconvention patterns in cultures of Free- swimming organisms. Science 133: 1766–1767.PubMedCrossRefGoogle Scholar
  60. Prescott, D.M. (1968). Biology of a new species of Ophrydium from Amazon Rio Negro river. J. Protozool. 15 (suppl.): 7.Google Scholar
  61. Saji, M. and Oosawa, F. (1974). Mechanism of photoaccumulation in Paramecium bursaria. J. Protozool. 21: 556–561.PubMedGoogle Scholar
  62. Smith, D.C. (1973). Symbiosis of Algae with Invertebrates. Oxford Univ. Press, London.Google Scholar
  63. Tartar, V. (1961). The Biology of Stentor. Pergamon Press, New York.Google Scholar
  64. Van Wagtendonk, W.J. (ed.) (1974). Paramecium a current survey. Elsevier, New York.Google Scholar
  65. Whitehead, J.A. (1971). Cellular Convection. Am. Scient. 59: 444–451.Google Scholar
  66. Willie, J.J. and Ehret, C.F. (1968). Circadian Rhythm of Pattern formation in Populations of a Free-Swimming Organism Tetrahymena. J. Protozool. 15: 789–792.Google Scholar
  67. Winet, H. (1970). The Influence of gravity and origin of Bioconvention in Tetrahymena pyriformis cultures. Ph.D. Thesis UCLA 1969. Diss. Abstr. Int. B 30: 5303.Google Scholar
  68. Winkler, R.N. and Corliss, J.D. (1965). Notes on the rarely described green colonial protozoan Ophrydium versatile. Trans. Am. Microsc. Soc. 84: 127–137.CrossRefGoogle Scholar
  69. Wolken, J.J. (1956). A Molecular Morphology of Euglena gracilis var. bacillaris. J. Protozool. 3: 211–221.Google Scholar
  70. Wolken, J.J. (1977). Euglenai The photoreceptor system for phototaxis. J. Protozool. 24: 518 - 522.PubMedGoogle Scholar
  71. Wolken, J.J. and Shin, E. (1958). Photomotion in Euglena gracilis. I. Photokinesis. II. Phototaxis. J. Protozool. 5: 39–46.Google Scholar
  72. Wood, D.C. (1976). Action Spectrum and Electrophysiological responses correlated with the photophobic response of Stentor coeruleus. Photochem. Photobiol. 24: 261–266.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • P. Couillard
    • 1
  1. 1.Département des Sciences BiologiquesUniversité de MontréalMontréalCanada

Personalised recommendations