A Survey of Vertebrate Strategies for Vision in Air and Water

  • J. G. Sivak
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)


Possibly the most important ecological factor to affect the evolution of the vertebrate eye is the effect of air and water on the refractive power of the cornea. Whereas the cornea is usually the major refractive element of the terrestrial eye, it is of little or no refractive consequence to an aquatic vertebrate. This has been attributed to the close similarity in refractive indices of water and corneal tissue (Walls, 1942; Duke-Elder, 1958; Tansley, 1965). In fact, the refractive index of the cornea is always appreciably greater than that of water (Table 1). However, its refractive index is of little importance since the cornea is bounded by two parallel of nearly parallel surfaces which separate it from water or air in front and aqueous humor behind. The indices for water and aqueous humor are very similar.


Bottlenose Dolphin Nictitate Membrane Harbour Seal Weddell Seal Corneal Astigmatism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashmole, N.P. (1971). Seabird ecology and the marine environment. In Avian Biology, Farner, D.S., King, J.R. and Parkes, K.C., pp. 223–285, Academic Press, New York.Google Scholar
  2. Aurell, G. and Holmgren, H. (1953). On the metachromic staining of the corneal tissue and some observations on its transparency. Acta Ophthalmol. 31: 1–27.Google Scholar
  3. Balliet, R.F. and Schusterman, R.J. (1971). Underwater and aerial visual acuity in the Asian “Clawless” Otter (Arriblonyx oinevva cineria). Nature 234: 305–306.PubMedCrossRefGoogle Scholar
  4. Baylor, E.R. (1967). Air and water vision of the Atlantic Flying Fish, Cypselurus heterurus. Nature 214: 307–309.PubMedCrossRefGoogle Scholar
  5. Beer, T. (1894). Die Accommodation des Fishauges. Pflugers Arch. Physiol. 58: 523–650.CrossRefGoogle Scholar
  6. Beer, T. (1898). Die Accommodation des Auges bei den Reptilien. Pflugers Arch. Physiol. 69: 507–568.CrossRefGoogle Scholar
  7. Charman, W.N. and Tucker, H. (1973). The optical system of the goldfish eye. Vision Res. 13: 1–8.PubMedCrossRefGoogle Scholar
  8. Citron, M.C. and Pinto, L.H. (1973). Retinal image: Larger and more illuminous for nocturnal than for diurnal lizard. Vision Res. 13: 873–876.PubMedCrossRefGoogle Scholar
  9. Dawson, W.W., Birndorf, L.A. and Perez, J.M. (1972). Gross anatomy and optics of the dolphin eye (Tursiops trunoatus). Cetology: 19, 1–12.Google Scholar
  10. Dral, A.D.G. (1972), Aquatic and aerial vision in the bottle-nosed dolphin. Neth. J. Sea Res. 5: 510–513.CrossRefGoogle Scholar
  11. Dral, A.D.G. (1974). Problems in image-focusing and astigmatism in Cetacea. J. aquat. Mammals 2: 22–28.Google Scholar
  12. Dral, A.D.G. (1975). Vision in Cetacea. J. Zoo Animal Med. 6: 17–21.CrossRefGoogle Scholar
  13. Dudziak, J. (1955). Ostrosc widzenia u zolwia blotnego (Emys orbicularis L.). (Visual acuity in the orbicularis l. tortoise in air and water). Folia Biol. (Krakow) 3: 205–227.Google Scholar
  14. Duke-Elder, S. (1958). System of Ophthalmology. Vol. I. The eye in evolution. Hemry Kimpton, London.Google Scholar
  15. DuPont, Y.S. and de Groot, P.J. (1976). A schematic dioptric apparatus for the frog’s eye (Rana esculenta). Vision Res. 16: 803–810.PubMedCrossRefGoogle Scholar
  16. Goodge, W.R. (1960). Adaptations for amphibious vision in the Dipper (Cinolus mexicanus). J. Morph. 107: 79–91.PubMedCrossRefGoogle Scholar
  17. Graham, J.B. and Rosenblatt, R.H. (1970). Aerial vision: unique adaptation in an intertidal fish. Science 168: 586–597.PubMedCrossRefGoogle Scholar
  18. Gundlach, R.H., Chard, R.D. and Skahen, J.R. (1945). The mechanism of accommodation in pigeons. J. Comp. Physiol. Psychol. 38: 27–42.Google Scholar
  19. Herman, L.M., Peacock, M.F., Yunker, M.P. and Madsen, C.J. (1975). Bottlenosed dolphin: double slit pupil yields equivalent aerial and underwater diurnal acuity. Science 189: 650–652.PubMedCrossRefGoogle Scholar
  20. Von Hess, C. (1912). Vergleichende Physiologie des Gesichtssinnes. In: Handbuch der Vergleichende Physiologie, Winterstein, H. Bd. 4:pp. 1–290, Gustav Fisher, Jena. Cited by Duke-Elder, 1958.Google Scholar
  21. Hughes, A. (1972). A schematic eye for the rabbit. Vision Res. 12: 123–128.PubMedCrossRefGoogle Scholar
  22. Ischreyt, G. (1912a). Zur vergleichenden Morphologie des Entenauges. Arch. f. vergl. Ophthalmol. 3: 39 - 76.Google Scholar
  23. Ischreyt, G. (1912b). Zur vergleichenden Morphologie des Enten-auges. Zweiter Beitrag. Arch. f. vergl. Ophthalmol. 3: 369–379.Google Scholar
  24. Ischreyt, G. (1912c). Zur Morphologie des Auges der Urinatores (Taucher). Arch. f. vergl. Ophthalmol. 3: 380–394.Google Scholar
  25. Ischreyt, G. (1914). Zur vergleichenden Morphologie des Enten¬auges. Dritter Beitrag. Arch. f. vergl. Ophthalmol. 4: 162–181.Google Scholar
  26. Jamieson, G.S. (1971). The functional significance of corneal distortion in marine mammals. Can. J. Zool. 49: 421–423.PubMedCrossRefGoogle Scholar
  27. Jamieson, G.S. and Fisher, H.D. (1970). Visual discriminations in the harbour seal Phooa vitulina* above and below water. Vision Res. 10: 1175–1180.PubMedCrossRefGoogle Scholar
  28. Jerlov, N.G. (1968). Optical Oceanography. Elsevier, New York.Google Scholar
  29. Johnson, G.L. (1893). Observations on the refraction and vision of the seal’s eye. Proc. Zool. Soc. Lond. 1: 719–723.Google Scholar
  30. Klinckostrom, A. (1895). Beitrage zur Kenntniss der Augen von Anableps tetrophthalmus? Skand. Arch. Physiol. 5: 67–69.Google Scholar
  31. Kolmer, W. (1924). Über das auge des Eisvogels (Alcedo att%s attis). Pflügers Arch. Physiol. 204: 266–274.CrossRefGoogle Scholar
  32. Kooyman, G.L. (1975). Behavior and physiology of diving. In: The Biology of Penguins, Stonehouse, B., pp. 115–137. University Park Press, Baltimore.Google Scholar
  33. Lavigne, D.M. and Ronald, K. (1972). The harp seal, Pagophilus groenlandious (Erxleben 1777). XXIII. Spectral sensitivity. Can. J. Zool. 50: 1197–1206.PubMedCrossRefGoogle Scholar
  34. Luling, K. (1958). Morpho-anatomische und histologische Untersuchungen an Auge Toxotes jaculatrix (Palls.). Z. Morph. Oekol. Tiere, 47: 529–610.CrossRefGoogle Scholar
  35. Madsen, C.J. (1972). Visual acuity in the bottle nose dolphin, Tursiops trunoatus (Montagu, 1821 ). M.Sc. dissertation, McGill University.Google Scholar
  36. Massof, R.W. and Chang, F.W. (1972). A revision of the rat schematic eye. Vision Res. 12: 793–796.PubMedCrossRefGoogle Scholar
  37. Matthiessen, L. (1880). Untersuchungen über dem Aplanatismus und die Periscopie der Kristallinsen in den Augen der Fische. Pflügers Arch. Physiol. 21: 287–307.CrossRefGoogle Scholar
  38. Cited by Walls, G.L. (1942). The Vertebrate Eye and its Adaptive Radiation. Cranbrook Institute of Science, Bloomfield Hills, Michigan.Google Scholar
  39. Matthiessen, L. (1891). Die nuren Fortschritte in unserer Kenntnis von dem optischen Baue des Auges der Wirbeltiere. Hamburg.Google Scholar
  40. Cited by Gullstrand, A. (1909). In: Handbuch der Physiologischen Optik. Edited by von Helmholtz, Voss, Hamburg.Google Scholar
  41. Matthiessen, L. (1893). Über den physkaisch — optischen bau der augonvom knowal und finwal. Zeitsch. f. Verl. Augenheilk. 7: 94.Google Scholar
  42. Cited by Dawson, W.S., Birndorf, L.A. and Perez, J.M. (1972).Google Scholar
  43. Murray, J. (1910). Some notes by James Murrary, biologist to the expedition. In: Shakelton, S.E. The Heart of the Antarctic, pp. 345–359. Muson, Toronto.Google Scholar
  44. Münk, O. (1969). The eye of the “four-eyed” fish Dialomrrus fuscus (Pisces, Blenniodei, Clinidae). Vidensk. Medd. Dan. naturhist. Foren. 132: 7–24.Google Scholar
  45. Pepper, R.L. and Simmons, J.V. (1973). In-air visual acuity of the bottlenose dolphin. Exp. Neurol. 271 - 276.Google Scholar
  46. Piggins, D.J. (1970). Refraction of the Harp Seal, Pagophilus groenlandious (Erxleben 1777). Nature 227: 78–79.PubMedCrossRefGoogle Scholar
  47. Prince, J.H. (1956). Comparative Anatomy of the Eye. Thomas, Springfield, Illinois.Google Scholar
  48. Protasov, V.R. (1968). Vision and Near Orientation of Fish. Acad. Sei. USSR. Israel Program for Scientific Translations, 1970.Google Scholar
  49. Rivamonte, A. (1976). Eye model to account for comparable aerial and underwater acuities of the bottlenose dolphin. Neth. J. Sea Res. 10: 491–498.CrossRefGoogle Scholar
  50. Rivamonte, A. (1977). The under-corrected lens of the frog eye (Nana esculenta) could yield comparable aerial and underwater vision. Vision Res. (in press).Google Scholar
  51. Schneider-V. Oreilli, M. (1907). Untersuchaugan liber das Auge von Anableps tetrophthalmus. Mitt. Naturforsch. Ges. Bern, 1629–1664, 87–113.Google Scholar
  52. Schusterman, R.J. (1972). Behavior of Marine Animals, In: Vertebrates V(II), Winn, H.E. and 011a, B.L., Plenum, New York.Google Scholar
  53. Schusterman, R.J. and Balliet, R.F. (1970). Conditioned vocalizations as a technique for determining visual acuity thresholds in sea lions. Science 169: 498–500.PubMedCrossRefGoogle Scholar
  54. Schusterman, R.J. and Barret, B. (1973). Amphibious Nature of visual acuity in the Asian “Clawless” Otter. Nature 244: 518–519.PubMedCrossRefGoogle Scholar
  55. Schwassman, H.O. and Kruger, L. (1965). Experimental analysis of the visual system of the four-eyed fish Anableps miorolepis. Vision Res. 5: 269–281.CrossRefGoogle Scholar
  56. Sivak, J.G. (1974). The refractive error of the fish eye. Vision Res. 14: 209–213.PubMedCrossRefGoogle Scholar
  57. Sivak, J.G. (1976a). Optics of the eye of the “four-eyed fish” CAnableps anableps). Vision Res. 16: 531–534.PubMedCrossRefGoogle Scholar
  58. Sivak, J.G. (1976b). The role of a flat cornea in the amphibious behavior of the blackfoot penguin (Spheniscus demersus). Can. J. Zool. 54: 1341–1345.CrossRefGoogle Scholar
  59. Sivak, J.G. (1976c). Refraction and accommodation of the elasmo- branch eye. In: Sensory Biology of Elasmobranchs. Hodgson, E.S. and Mathewson, R.W. U.S. Government Printing Office, (in press).Google Scholar
  60. Sivak, J.G. (1977). The role of the spectacle in the visual optics of the snake eye. Vision Res. 17: 293–298.PubMedCrossRefGoogle Scholar
  61. Sivak, J.G. and Piggins, D.J. (1975). Refractive state of the eye of the Polar Bear (Thalarotos maritimus Phipps). Norw. J. Zool. 23: 89–91.Google Scholar
  62. Sivak, J.G., Lincer, J.L. and Bobier, W. (1977). Amphibious visual optics of the eyes of the double-crested cormorant (Phalaorooorax auritus) and the brown pelican (Pelecanus oooidentaUs). Can. J. Zool. 55: 782–788.PubMedCrossRefGoogle Scholar
  63. Sivak, J.G. and Millodot, M. (1977). Optical performance of the penguin eye in air and water. J. Comp. Physiol. 119: 241–247.CrossRefGoogle Scholar
  64. Tansley, K. (1965). Vision in Vertebrates. Chapman and Hill, London.Google Scholar
  65. Vakkur, G.J. and Bishop, P.O. (1963). The schematic eye of the cat. Vision Res. 3: 357–381.CrossRefGoogle Scholar
  66. Walls, G.L. (1942). The Vertebrate Eye and its Adaptive Radiation. Cranbrook Institute of Science, Bloomfield Hills, Michigan.Google Scholar
  67. Wilson, G. (1970). Some comments on the optical system of pinnipedia as a result of observations on the Weddell seal (Leptonyohotes weddelli). Br. Antarct. Surv. Bull. 23, 57–62.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. G. Sivak
    • 1
  1. 1.Laboratory of Comparative OptometryUniversity of WaterlooWaterlooCanada

Personalised recommendations