Skip to main content

A Survey of Vertebrate Strategies for Vision in Air and Water

  • Chapter
Sensory Ecology

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 18))

Abstract

Possibly the most important ecological factor to affect the evolution of the vertebrate eye is the effect of air and water on the refractive power of the cornea. Whereas the cornea is usually the major refractive element of the terrestrial eye, it is of little or no refractive consequence to an aquatic vertebrate. This has been attributed to the close similarity in refractive indices of water and corneal tissue (Walls, 1942; Duke-Elder, 1958; Tansley, 1965). In fact, the refractive index of the cornea is always appreciably greater than that of water (Table 1). However, its refractive index is of little importance since the cornea is bounded by two parallel of nearly parallel surfaces which separate it from water or air in front and aqueous humor behind. The indices for water and aqueous humor are very similar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashmole, N.P. (1971). Seabird ecology and the marine environment. In Avian Biology, Farner, D.S., King, J.R. and Parkes, K.C., pp. 223–285, Academic Press, New York.

    Google Scholar 

  • Aurell, G. and Holmgren, H. (1953). On the metachromic staining of the corneal tissue and some observations on its transparency. Acta Ophthalmol. 31: 1–27.

    Google Scholar 

  • Balliet, R.F. and Schusterman, R.J. (1971). Underwater and aerial visual acuity in the Asian “Clawless” Otter (Arriblonyx oinevva cineria). Nature 234: 305–306.

    Article  PubMed  Google Scholar 

  • Baylor, E.R. (1967). Air and water vision of the Atlantic Flying Fish, Cypselurus heterurus. Nature 214: 307–309.

    Article  PubMed  Google Scholar 

  • Beer, T. (1894). Die Accommodation des Fishauges. Pflugers Arch. Physiol. 58: 523–650.

    Article  Google Scholar 

  • Beer, T. (1898). Die Accommodation des Auges bei den Reptilien. Pflugers Arch. Physiol. 69: 507–568.

    Article  Google Scholar 

  • Charman, W.N. and Tucker, H. (1973). The optical system of the goldfish eye. Vision Res. 13: 1–8.

    Article  PubMed  Google Scholar 

  • Citron, M.C. and Pinto, L.H. (1973). Retinal image: Larger and more illuminous for nocturnal than for diurnal lizard. Vision Res. 13: 873–876.

    Article  PubMed  Google Scholar 

  • Dawson, W.W., Birndorf, L.A. and Perez, J.M. (1972). Gross anatomy and optics of the dolphin eye (Tursiops trunoatus). Cetology: 19, 1–12.

    Google Scholar 

  • Dral, A.D.G. (1972), Aquatic and aerial vision in the bottle-nosed dolphin. Neth. J. Sea Res. 5: 510–513.

    Article  Google Scholar 

  • Dral, A.D.G. (1974). Problems in image-focusing and astigmatism in Cetacea. J. aquat. Mammals 2: 22–28.

    Google Scholar 

  • Dral, A.D.G. (1975). Vision in Cetacea. J. Zoo Animal Med. 6: 17–21.

    Article  Google Scholar 

  • Dudziak, J. (1955). Ostrosc widzenia u zolwia blotnego (Emys orbicularis L.). (Visual acuity in the orbicularis l. tortoise in air and water). Folia Biol. (Krakow) 3: 205–227.

    Google Scholar 

  • Duke-Elder, S. (1958). System of Ophthalmology. Vol. I. The eye in evolution. Hemry Kimpton, London.

    Google Scholar 

  • DuPont, Y.S. and de Groot, P.J. (1976). A schematic dioptric apparatus for the frog’s eye (Rana esculenta). Vision Res. 16: 803–810.

    Article  PubMed  Google Scholar 

  • Goodge, W.R. (1960). Adaptations for amphibious vision in the Dipper (Cinolus mexicanus). J. Morph. 107: 79–91.

    Article  PubMed  Google Scholar 

  • Graham, J.B. and Rosenblatt, R.H. (1970). Aerial vision: unique adaptation in an intertidal fish. Science 168: 586–597.

    Article  PubMed  Google Scholar 

  • Gundlach, R.H., Chard, R.D. and Skahen, J.R. (1945). The mechanism of accommodation in pigeons. J. Comp. Physiol. Psychol. 38: 27–42.

    Google Scholar 

  • Herman, L.M., Peacock, M.F., Yunker, M.P. and Madsen, C.J. (1975). Bottlenosed dolphin: double slit pupil yields equivalent aerial and underwater diurnal acuity. Science 189: 650–652.

    Article  PubMed  Google Scholar 

  • Von Hess, C. (1912). Vergleichende Physiologie des Gesichtssinnes. In: Handbuch der Vergleichende Physiologie, Winterstein, H. Bd. 4:pp. 1–290, Gustav Fisher, Jena. Cited by Duke-Elder, 1958.

    Google Scholar 

  • Hughes, A. (1972). A schematic eye for the rabbit. Vision Res. 12: 123–128.

    Article  PubMed  Google Scholar 

  • Ischreyt, G. (1912a). Zur vergleichenden Morphologie des Entenauges. Arch. f. vergl. Ophthalmol. 3: 39 - 76.

    Google Scholar 

  • Ischreyt, G. (1912b). Zur vergleichenden Morphologie des Enten-auges. Zweiter Beitrag. Arch. f. vergl. Ophthalmol. 3: 369–379.

    Google Scholar 

  • Ischreyt, G. (1912c). Zur Morphologie des Auges der Urinatores (Taucher). Arch. f. vergl. Ophthalmol. 3: 380–394.

    Google Scholar 

  • Ischreyt, G. (1914). Zur vergleichenden Morphologie des Enten¬auges. Dritter Beitrag. Arch. f. vergl. Ophthalmol. 4: 162–181.

    Google Scholar 

  • Jamieson, G.S. (1971). The functional significance of corneal distortion in marine mammals. Can. J. Zool. 49: 421–423.

    Article  PubMed  Google Scholar 

  • Jamieson, G.S. and Fisher, H.D. (1970). Visual discriminations in the harbour seal Phooa vitulina* above and below water. Vision Res. 10: 1175–1180.

    Article  PubMed  Google Scholar 

  • Jerlov, N.G. (1968). Optical Oceanography. Elsevier, New York.

    Google Scholar 

  • Johnson, G.L. (1893). Observations on the refraction and vision of the seal’s eye. Proc. Zool. Soc. Lond. 1: 719–723.

    Google Scholar 

  • Klinckostrom, A. (1895). Beitrage zur Kenntniss der Augen von Anableps tetrophthalmus? Skand. Arch. Physiol. 5: 67–69.

    Google Scholar 

  • Kolmer, W. (1924). Über das auge des Eisvogels (Alcedo att%s attis). Pflügers Arch. Physiol. 204: 266–274.

    Article  Google Scholar 

  • Kooyman, G.L. (1975). Behavior and physiology of diving. In: The Biology of Penguins, Stonehouse, B., pp. 115–137. University Park Press, Baltimore.

    Google Scholar 

  • Lavigne, D.M. and Ronald, K. (1972). The harp seal, Pagophilus groenlandious (Erxleben 1777). XXIII. Spectral sensitivity. Can. J. Zool. 50: 1197–1206.

    Article  PubMed  Google Scholar 

  • Luling, K. (1958). Morpho-anatomische und histologische Untersuchungen an Auge Toxotes jaculatrix (Palls.). Z. Morph. Oekol. Tiere, 47: 529–610.

    Article  Google Scholar 

  • Madsen, C.J. (1972). Visual acuity in the bottle nose dolphin, Tursiops trunoatus (Montagu, 1821 ). M.Sc. dissertation, McGill University.

    Google Scholar 

  • Massof, R.W. and Chang, F.W. (1972). A revision of the rat schematic eye. Vision Res. 12: 793–796.

    Article  PubMed  Google Scholar 

  • Matthiessen, L. (1880). Untersuchungen über dem Aplanatismus und die Periscopie der Kristallinsen in den Augen der Fische. Pflügers Arch. Physiol. 21: 287–307.

    Article  Google Scholar 

  • Cited by Walls, G.L. (1942). The Vertebrate Eye and its Adaptive Radiation. Cranbrook Institute of Science, Bloomfield Hills, Michigan.

    Google Scholar 

  • Matthiessen, L. (1891). Die nuren Fortschritte in unserer Kenntnis von dem optischen Baue des Auges der Wirbeltiere. Hamburg.

    Google Scholar 

  • Cited by Gullstrand, A. (1909). In: Handbuch der Physiologischen Optik. Edited by von Helmholtz, Voss, Hamburg.

    Google Scholar 

  • Matthiessen, L. (1893). Über den physkaisch — optischen bau der augonvom knowal und finwal. Zeitsch. f. Verl. Augenheilk. 7: 94.

    Google Scholar 

  • Cited by Dawson, W.S., Birndorf, L.A. and Perez, J.M. (1972).

    Google Scholar 

  • Murray, J. (1910). Some notes by James Murrary, biologist to the expedition. In: Shakelton, S.E. The Heart of the Antarctic, pp. 345–359. Muson, Toronto.

    Google Scholar 

  • Münk, O. (1969). The eye of the “four-eyed” fish Dialomrrus fuscus (Pisces, Blenniodei, Clinidae). Vidensk. Medd. Dan. naturhist. Foren. 132: 7–24.

    Google Scholar 

  • Pepper, R.L. and Simmons, J.V. (1973). In-air visual acuity of the bottlenose dolphin. Exp. Neurol. 271 - 276.

    Google Scholar 

  • Piggins, D.J. (1970). Refraction of the Harp Seal, Pagophilus groenlandious (Erxleben 1777). Nature 227: 78–79.

    Article  PubMed  Google Scholar 

  • Prince, J.H. (1956). Comparative Anatomy of the Eye. Thomas, Springfield, Illinois.

    Google Scholar 

  • Protasov, V.R. (1968). Vision and Near Orientation of Fish. Acad. Sei. USSR. Israel Program for Scientific Translations, 1970.

    Google Scholar 

  • Rivamonte, A. (1976). Eye model to account for comparable aerial and underwater acuities of the bottlenose dolphin. Neth. J. Sea Res. 10: 491–498.

    Article  Google Scholar 

  • Rivamonte, A. (1977). The under-corrected lens of the frog eye (Nana esculenta) could yield comparable aerial and underwater vision. Vision Res. (in press).

    Google Scholar 

  • Schneider-V. Oreilli, M. (1907). Untersuchaugan liber das Auge von Anableps tetrophthalmus. Mitt. Naturforsch. Ges. Bern, 1629–1664, 87–113.

    Google Scholar 

  • Schusterman, R.J. (1972). Behavior of Marine Animals, In: Vertebrates V(II), Winn, H.E. and 011a, B.L., Plenum, New York.

    Google Scholar 

  • Schusterman, R.J. and Balliet, R.F. (1970). Conditioned vocalizations as a technique for determining visual acuity thresholds in sea lions. Science 169: 498–500.

    Article  PubMed  Google Scholar 

  • Schusterman, R.J. and Barret, B. (1973). Amphibious Nature of visual acuity in the Asian “Clawless” Otter. Nature 244: 518–519.

    Article  PubMed  Google Scholar 

  • Schwassman, H.O. and Kruger, L. (1965). Experimental analysis of the visual system of the four-eyed fish Anableps miorolepis. Vision Res. 5: 269–281.

    Article  Google Scholar 

  • Sivak, J.G. (1974). The refractive error of the fish eye. Vision Res. 14: 209–213.

    Article  PubMed  Google Scholar 

  • Sivak, J.G. (1976a). Optics of the eye of the “four-eyed fish” CAnableps anableps). Vision Res. 16: 531–534.

    Article  PubMed  Google Scholar 

  • Sivak, J.G. (1976b). The role of a flat cornea in the amphibious behavior of the blackfoot penguin (Spheniscus demersus). Can. J. Zool. 54: 1341–1345.

    Article  Google Scholar 

  • Sivak, J.G. (1976c). Refraction and accommodation of the elasmo- branch eye. In: Sensory Biology of Elasmobranchs. Hodgson, E.S. and Mathewson, R.W. U.S. Government Printing Office, (in press).

    Google Scholar 

  • Sivak, J.G. (1977). The role of the spectacle in the visual optics of the snake eye. Vision Res. 17: 293–298.

    Article  PubMed  Google Scholar 

  • Sivak, J.G. and Piggins, D.J. (1975). Refractive state of the eye of the Polar Bear (Thalarotos maritimus Phipps). Norw. J. Zool. 23: 89–91.

    Google Scholar 

  • Sivak, J.G., Lincer, J.L. and Bobier, W. (1977). Amphibious visual optics of the eyes of the double-crested cormorant (Phalaorooorax auritus) and the brown pelican (Pelecanus oooidentaUs). Can. J. Zool. 55: 782–788.

    Article  PubMed  Google Scholar 

  • Sivak, J.G. and Millodot, M. (1977). Optical performance of the penguin eye in air and water. J. Comp. Physiol. 119: 241–247.

    Article  Google Scholar 

  • Tansley, K. (1965). Vision in Vertebrates. Chapman and Hill, London.

    Google Scholar 

  • Vakkur, G.J. and Bishop, P.O. (1963). The schematic eye of the cat. Vision Res. 3: 357–381.

    Article  Google Scholar 

  • Walls, G.L. (1942). The Vertebrate Eye and its Adaptive Radiation. Cranbrook Institute of Science, Bloomfield Hills, Michigan.

    Google Scholar 

  • Wilson, G. (1970). Some comments on the optical system of pinnipedia as a result of observations on the Weddell seal (Leptonyohotes weddelli). Br. Antarct. Surv. Bull. 23, 57–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Sivak, J.G. (1978). A Survey of Vertebrate Strategies for Vision in Air and Water. In: Ali, M.A. (eds) Sensory Ecology. NATO Advanced Study Institutes Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3363-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3363-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3365-4

  • Online ISBN: 978-1-4684-3363-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics