Peripheral Thermal Receptors

  • R. Loftus
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)


Thermal receptors as a rule do not provide an organism with the kind of detailed information one is accustomed to expect from sense organs for vision, hearing, or smell. The location of nest, brood, mate, foraging areas, and predators within a biotope is mediated largely by sensory systems other than thermal, though there are notable exceptions. The facial pits of crotalid vipers (Bullock and Diecke, 1956; Goris and Nomoto, 1967) enable their possessors to strike successfully at small warm objects in the dark. Similar pits line the mouth region of the Boidae (Haris and Gamow, 1971; Hensel, 1947b). Melanophila, a bupestrid beetle, has sense organs at the rim of the depressions where its middle legs join its mesothorax. Apparently the beetle employs these organs to locate the scene of forest fires (Evans, 1964, 1966a,b). There it seeks fairly intact stumps of. freshly injured trees for its grubs to feed in. Fire damage affords access. Mosquitoes are another example. They are equipped with antennal thermal receptors which in combination with chemoreceptors presumably assist them in the search for their warm-blooded prey (Davis and Sokolove, 1975).


Sense Organ Adaptive Radiation Yellow Fever Mosquito Steady Temperature Impulse Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altner, H. (1977). Insect sensilla: Principles of structure and function. Verh. Dtsch. Zool. Ges. 1977, 139–153.Google Scholar
  2. Altner, H., H. Sass, and I. Altner (1977). Relationship between structure and function of antennal chemo-, hygro-, and thermo- receptive sensilla in Periploneta americana. Cell Tiss. Res. 176, 389–405.CrossRefGoogle Scholar
  3. Altner, H., H. Tichy, and I. Altner (1978). Folded outer dendritic segments of a sensory cell within a thermo- and hygroreceptive sensillum of the insect, Carausius morosus. in prep.Google Scholar
  4. Becker, D. Styloconic sensilla at Mamestra. Doctoral Dissertation. In prep.Google Scholar
  5. Benzing, H., H. Hensel, and R. Wurster (1969). Integrated static activity of lingual cold receptors. Pflügers Arch. ges. Physiol. 311: 50–54.CrossRefGoogle Scholar
  6. Bernard, J. (1974). Etude êlectroPhysiologique de récepteurs impliques dans l’orientation vers l’hôte et dans l’acte hêmatophage chez un Hémiptêre: Triatoma infestons. Thèse Doct. Sei. Nat. Rennes, pp. 1–285.Google Scholar
  7. Bromm, B., H. Hensel, and A.T. Tagmat (1976). The electrosensitivity of the isolated ampulla of Lorenzini in the dogfish. J. Comp. Physiol. 111, 127–136.CrossRefGoogle Scholar
  8. Bullock, T.H. and F.P.J. Diecke (1956). Properties of an infra-red receptor. J. Physiol. (London) 134, 47–87.Google Scholar
  9. Bullock, T.H. and W. Fox (1957). The anatomy of the infrared sense organ in the facial pits of pit vipers. Quart. J. Microsc. Sei. 98, 219–234.Google Scholar
  10. Burkhardt, D. (1959). Die Erregungsvorgänge sensibler Ganglienzellen in Abhängigkeit von der Temperatur. Biol. Zbl. 78, 22–62.Google Scholar
  11. Coenen-Staß, D. (1976). Vorzugstemperatur und Vorzugsluftfeuchtigkeit der beiden Schabenarten Periplaneta americana und Blaberus trapezoideus (Insecta: Blattaria). Ent. Exp. & Appl. 20, 143–153.CrossRefGoogle Scholar
  12. Corbiêre-Tichanê, G. (1974). Sur la presence possible d’un pigment visuel dans un récepteur sensoriel de l’antenne d’un colêoptêre cavernicole Speophyes lucidulus Delar. (Bathysciinae). Vision Res. 14, 819–822.PubMedCrossRefGoogle Scholar
  13. Corbiêre-Tichanê, G. and N. Bermond (1972). Sensilles énigmatiques de l’antenne de certains Coléoptères. Z. Zellforsch. 127, 9–33.PubMedCrossRefGoogle Scholar
  14. Cokl, A. (1972). Thermorecepcija pri stenici vrste Oncopeltus fasciatus. Bioloski vestnik 20, 39–45.Google Scholar
  15. Darian-Smith, J., K.O. Johnson, and R. Dykes (1973). “Cold” fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J. Neuro Physiol. 36, 325–346.Google Scholar
  16. Davis, E.E. and P.G. Sokolove (1975). Temperature responses of annte- nal receptors of the mosquito, Aedes aegypti. J. Comp. Physiol. 96, 223–236.CrossRefGoogle Scholar
  17. Dickenson, S.H. (1977). Specific responses of rat raphê neurones to skin temperature. J. Physiol. (London) 273, 277–293.Google Scholar
  18. Draslar, K. Temperature dependence of trichobothria response in Tfyrwhocoris. In prep.Google Scholar
  19. Esch, H. (1976). Body temperature and flight performance of honey bees in a servo-mechanically controlled wind tunnel. J. Comp. Physiol. 109, 265–277.CrossRefGoogle Scholar
  20. Evans, W.G. (1964). Infrared receptors in Metanophila acuminata De Geer. Nature 202, 211.PubMedCrossRefGoogle Scholar
  21. Evans, W.G. (1966a). Perception of infrared radiation from forest fires by Melanophila acuminata de Geer (Buprestidae, Coleoptera). Ecology 47, 1061–1065.CrossRefGoogle Scholar
  22. Evans, W.G. (1966b). Morphology of the infrared sense organs of Metanophita aovom/nata (Buprestidae: Coleoptera). Ann. Entomol. Soc. Amer. 59, 873–877.Google Scholar
  23. Gaffal, K.P., H. Tichy, J. Theiß, and G. Seelinger (1975). Structural polarities in mechanosensitive sensilla and their influence on stimulus transmission. Zoomorph. 82, 79–103.CrossRefGoogle Scholar
  24. Gift, J.J. (1977). Application of temperature preference studies to environmental impact assessment. J. Fish. Res. Board Can. 34, 746–749.CrossRefGoogle Scholar
  25. Goris, R.C. and M. Nomoto (1967). Infrared receptopn in oriental crotaline snakes. Comp. Biochem. Physiol. 23, 879–892.PubMedCrossRefGoogle Scholar
  26. Goris, R.C. and S. Terashima (1976). The structure and function of infrared receptors of snakes. Progress in brain research, vol. 43. Somatosensory and visceral receptor mechanisms. A. Iggo and O.B. Ilyinski (Edit.). Elsevier Scientific Publ. Co. Amsterdam, Oxford, N.Y.Google Scholar
  27. Harris, J.F. and R.I. Gamow (1971). Snake infrared receptors: thermal or photochemical mechanism. Science 172, 1252–1253.PubMedCrossRefGoogle Scholar
  28. Heinrich, B. (1974). Thermoregulation in endothermic insects. Science 185, 747–756.PubMedCrossRefGoogle Scholar
  29. Helion, R.F., H. Hensel, and K. Schäfer (1975). Thermal receptors in the scrotum of the rat. J. Physiol. (London) 248, 349–357.Google Scholar
  30. Hensel, H. (1952). Physiologie der Thermoreception. Ergebn. Physiol. 47, 166–368.Google Scholar
  31. Hensel, H. (1955). Quantitative Beziehungen zwischen Temperaturreiz und Aktionspotentialen der Lorenzinischen Ampullen. Z. Vergl. Physiol. 37, 509–526.CrossRefGoogle Scholar
  32. Hensel, H. (1974a). Thermoreceptors. Ann. Rev. Physiol. 36, 233–249.CrossRefGoogle Scholar
  33. Hensel, H. (1974b). Properties of warm receptors in Boa öonstriötor, Naturwissenschaften 61, 369.PubMedCrossRefGoogle Scholar
  34. Hensel, H. (1976). Functional and structural basis of thermoreception. Progress in brain research, 43. Iggo, A. and O.B. Ilynski (Edit.). Elsevier Scientific Publ. Co., Amsterdam, Oxford, N.Y.Google Scholar
  35. Hensel, H., K.H. Andres, and M. v. Düring (1974). Structure and function of cold receptors. Pflügers Arch. ges. Physiol. 352, 1–10.CrossRefGoogle Scholar
  36. Hensel, H. and K. Bowman (1960). Afferent impulses in cutaneous sensory nerves in human subjects. J. Neuro Physiol. 23, 564–578.Google Scholar
  37. Hensel, H. and D.R. Kenshalo (1969). Warm receptors in the nasal region of cats. J. Physiol. (London) 204, 99–112.Google Scholar
  38. Hensel, H. and Y. Zotterman (1951). Quantitative Beziehungen zwischen der Entladung einzelner Kältefasern und der Temperatur. Acta Physiol. Scand. 23, 291–319.PubMedCrossRefGoogle Scholar
  39. Iggo, A. (1969). Cutaneous thermoreceptors in primates and subprimates. J. Physiol. (London) 200, 403–430.Google Scholar
  40. Järvilehto, T. (1973). Neural coding in the temperature sense. Ann. Acad. Sei. Fenn. B, 184, 1–71.Google Scholar
  41. Johnson, K.O., I. Darian-Smith, and C. LaMotte (1973). Peripheral neural determinants of temperature discrimination in mein: A correlative study of responses to cooling skin. J. Neurophysiology 36, 347–370.Google Scholar
  42. Kenshalo, D.R., H. Hensel, P. Graziadei, and H. Fruhstorfer (1971). On the anatomy, Physiology, and psychophysics of the cat’s temperature-sensing system. In: Dubner, R. and Y. Kawamura (Eds.), Oral-Facial Sensory and Motor Mechanism. New York: Appleton- Century-Crofts.Google Scholar
  43. Kerkut, G.A. and B.J.R. Taylor (1957). A temperature receptor in the tarsus of the cockroach, Periplaneta amerioana. J. Exp. Biol. 34, 486–493.Google Scholar
  44. Lacher, V. (1964). Elektro Physiologische Untersuchungen an einzelnen Rezeptoren für Geruch, Kohlendioxyd, Luftfeuchtigkeit und Temperatur auf den Antennen der Arbeitsbiene und der Drohne. Z. Vergl. Physiol. 48, 587–623.CrossRefGoogle Scholar
  45. Loftus, R. (1966). Cold receptor on the antenna of Periplaneta ameroana. Z. Vergl. Physiol. 52, 380–385.CrossRefGoogle Scholar
  46. Loftus, R. (1968). The response of the antennal cold receptor of Periplaneta amerioana to rapid temperature changes and to steady temperature. Z. Vergl. Physiol. 59, 413–455.CrossRefGoogle Scholar
  47. Loftus, R. (1969). Differential thermal Components in the response of the antennal cold receptor of Periplaneta amerioana to Slowly changing temperature. Z. Vergl. Physiol. 63, 415–433.Google Scholar
  48. Loftus, R. (1976). Temperature-dependent dry receptor on antenna of Periplaneta. Tonic response. J. Comp. Physiol. Ill, 153–170.Google Scholar
  49. McCrea, M.J. and J.E. Heath (1971). Dependence of flight on tempera-ture regulation in the moth, Mandula sexta. J. Exp. Biol. 54, 415–435.PubMedGoogle Scholar
  50. Mclver, S.B. (1973). Fine structure of antennal sensilla coeloconica of culicine mosquitos. Tissue and Cell 5, 105–112.CrossRefGoogle Scholar
  51. Mclver, S.B. and R. Siemicki (1976). Fine structure of the antennal tip of the crabhole mosquito, Deinooerites cancer (Diptera, Culicidae). Int. J. Insect Morphol. Embryol. 5, 319–334.CrossRefGoogle Scholar
  52. Michalski, W.J. and J.J. Séguin (1975). The effects of muscle cooling and stretch on muscle spindle secondary endings in the cat. J. Physiol. (London) 253, 341–356.Google Scholar
  53. Necker, R. (1973). Temperature sensitivity of thermoreceptors and mechanoreceptors on the beak of pigeons. J. Comp. Physiol. 87, 379–391.CrossRefGoogle Scholar
  54. Palm, T. (1962). Zur Kenntnis der früheren EntwicklungsStadien schwedischer Käfer. 2. Bupestriden-Larven, die in Bäumen leben. Opuscula Entomolog. 27, 65–78.Google Scholar
  55. Poulos, D.A. and R.A. Lende (1970). Response of trigeminal ganglion neurons to thermal stimulation of oral-facial regions. II. Temperature change response. J. Neuro Physiol. 33, 518–526.Google Scholar
  56. Schaller, D. (1978). Sensory system of Periplaneta amerioana L.: Distribution and frequency of morphologically different sensillum types and their sex-specific changes during postembryonic development. In prep.Google Scholar
  57. Schoonhoven, L.M. (1967). Some cold receptors in larvae of three lepidoptera species. J. Insect Physiol. 13, 821–826.CrossRefGoogle Scholar
  58. Shoemaker, V.H., K.A. Nagy, and W.R. Costa (1976). Energy utilization and temperature regulation by jackrabbits (Lepus califorincus) in the Mojave Desert. Physiol. Zool. 49, 364–375.Google Scholar
  59. Slifer, E.H. and S.S. Sekhon (1961). Fine structure of the sense organs on the antennal flagellum of the honey bee, Apis meWi- fera) Linnaeus. J. Morph. 109, 351–381.CrossRefGoogle Scholar
  60. Späth, M. (1967). Die Wirkung der Temperatur auf die Mechanorezep- toren des Knochenfisches Leuaisous rutilis L. Z. Vergl. Physiol. 56, 431–462.CrossRefGoogle Scholar
  61. Späth, M. and K. Grocki (1976). Reactions of the goldfish (Carassius auratus auratus L.) to quantified mechanical and thermal stimuli. Experientia (Basel) 32, 1253–1254.CrossRefGoogle Scholar
  62. Spray, D.C. (1974). Characteristics, specificity and efferent control of frog cutaneous cold receptors. J. Physiol. (London) 237, 15–38.Google Scholar
  63. Steinbrecht, R.A. and B. Müller (1976). Fine structure of the antennal receptors of the bedbug Cimex lectularius L. Tissue and Cell 8, 615–636.PubMedCrossRefGoogle Scholar
  64. Terashima, S.-I., R.C. Goris, and Y. Katsuki (1968). Generator potential of crotaline snake infrared receptor. J. Neurophysiol. 31, 282–288.Google Scholar
  65. Terashima, S.-I., R.C. Goris, and Y. Katsuki (1970). Structure of warm fiber terminals in the pit membrane of vipers. J. Ultrastr. Res. 31, 494–506.CrossRefGoogle Scholar
  66. Thurm, U. (1963). Die Beziehungen zwischen mechanischen Reizgrößen und stationären Erregungszuständen bei Borstenfeldsensillen von Bienen. Z. Vergl. Physiol. 46, 351–382.CrossRefGoogle Scholar
  67. Thurm, U. (1965). An insect mechanoreceptor. I. Fine structure and adequate stimulus. Cold Spring Harb. Symp. Quant. Biol. 30, 75–82.PubMedCrossRefGoogle Scholar
  68. Tichy, H. Antennal thermoreceptors of Caransius morosus. In prep.Google Scholar
  69. Waldow, U. (1970). Elektro Physiologische Untersuchungen an Feuchte-, Trocken- und Kälterezeptoren auf der Antenne der Wanderheuschrecke Locusta. Z. Vergl. Physiol. 69, 249–283.CrossRefGoogle Scholar
  70. Waldow, Ü. (1975). Multimodale Neurone im Deutocerebrum von Periplaneta americana. J. Comp. Physiol. 101, 329–341.CrossRefGoogle Scholar
  71. Van Weel, P.B. and D.L. McDonald (1971). A preliminary report on heat perception in cockroaches. Netherlands J. Zool. 21 (4); 487–491.CrossRefGoogle Scholar
  72. Yokohari, F. and H. Tateda (1976). Moist and dry hygroreceptors for relative humidity on the cockroach Periplaneta ameTrecana L. J. Comp. Physiol. 106, 137–152.CrossRefGoogle Scholar
  73. Yokohari, F., Y. Tominaga, M. Ando, and H. Tateda (1975). An antennal hygroreceptive sensillum of the cockroach. J. Electron Micr. 24, 291–293.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. Loftus
    • 1
  1. 1.Institut für ZoologieUniversität RegensburgRegensburgGermany

Personalised recommendations