• J. H. S. Blaxter
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)


It is possible to make a fairly clear distinction between the effects of pressure on organisms in the aquatic and in the terrestrial environment. In water, pressure increases with depth roughly at the rate of 0.1 atm/m (Fig. 1) so that in the deep ocean pressures near the sea bed may be as high as 1000 atm. In more shallow areas pressures will be less but the effect of tidal changes, which are often 10 m or more, or waves, which may be several metres high, will impose greater percentage changes in pressure than they will over deep water.


Pressure Change Stretch Receptor Pressure Sensitivity Pressure Stimulus Pressure Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaxter, J.H.S. and Denton, E.J. (1976). Function of the swimbladder- inner ear-lateral line system of herring in the young stages. J. mar. biol. Ass. U.K. 56: 487–502.CrossRefGoogle Scholar
  2. Blaxter, J.H.S. and Tytler, P. (1972). Pressure discrimination in teleost fish. Symp. Soc. exp. Biol. 26: 417–443.Google Scholar
  3. Blaxter, J.H.S. and Tytler, P. (1978). Physiology and function of the swimbladder. Adv. comp. Physiol. Biochem. 7:Google Scholar
  4. Bone, Q. and Chubb, A.D. (1975). The structure of stretch receptor endings in the fin muscles of rays. J. mar. biol. Ass. U.K. 55: 939–943.CrossRefGoogle Scholar
  5. Brauer, R.W. (1972). Barobiology and the experimental biology of the deep sea. North Carolina Sea Grant Programme pp. 428.Google Scholar
  6. Clarac, F. (1976). Crustacean cuticular stress detectors. In “Structure and Function of Proprioceptors in the Invertebrates”. 299–321, Ed. P.J. Mill, Chapman & Hall: London.Google Scholar
  7. Denton, E.J. and Gilpin-Brown, J.B. (1971). Further observations on the buoyancy of Spirula. J. mar. biol. Ass. U.K. 51: 363–373.CrossRefGoogle Scholar
  8. Denton, E.J., Gilpin-Brown, J.B. and Howarth, J.V. (1961). The osmotic mechanism of the cuttlebone. J. mar. biol. Ass. U.K. 41: 351–364.CrossRefGoogle Scholar
  9. Digby, P.S.B. (1972). Detection of small changes in hydrostatic pressure by Crustacea and its relation to electrode action in the cuticle. Symp. Soc. exp. Biol. 26, 445 — 471.PubMedGoogle Scholar
  10. Dijkgraaf, S. (1941). Uber die Bedeutung der Weberschen Knöchel für die Wahrnehmung von Schwankungen des hydrostatischen Druckes. Z. vergl. Physiol. 28: 389–401.CrossRefGoogle Scholar
  11. Enright, J.T. (1962). Responses of an amphipod to pressure changes. Comp. Biochem. Physiol. 7: 131–145.CrossRefGoogle Scholar
  12. Enright, J.T. (1963). Estimates of the compressibility of some marine crustaceans. Limnol. Oceanogr. 8: 382–387.CrossRefGoogle Scholar
  13. Flügel, H. (1972). 8. Pressure 8.3 Animals. In Marine Ecology Vol.1, Part 3; 1407–1437. Ed. O. Kinne, Wiley InterScience: London, New York.Google Scholar
  14. Gibson, R.N. (1975). A comparison of field and laboratory activity patterns of juvenile plaice. Proc. 9th Europ. Mar. Biol. Symp.. 13–28. Ed. H. Barnes, Aberdeen University Press.Google Scholar
  15. Gibson, R.N., Blaxter, J.H.S. and de Groot, S.J. (1978). Developmental changes in the activity rhythms of the plaice. Proc. Symp. “The Rhythmic Activity of Fish” held at University of Stirling, Scotland in July 1977. Academic Press; London and New York.Google Scholar
  16. Kinne, O. (1972). 8. Pressure (1) General aspects. In Marine Ecology Vol 1, Pt 3. 1323–1360. Ed. O. Kinne, Wiley InterScience; London, New York.Google Scholar
  17. Knight-Jones, E.W. and Morgan, E. (1966). Responses of marine animals to changes in hydrostatic pressure. Oceanogr. mar. Biol. Ann. Rev. 4: 267–299.Google Scholar
  18. Kreithen, M.L. and Keeton, W.T. (1974). Detection of changes in atmospheric pressure by the homing pigeon Columba Vivía. J. comp. Physiol. 89: 73–82.CrossRefGoogle Scholar
  19. Laurent, P. and Rouzeau, J.-D. (1972). Afferent neural activity from pseudobranch of teleosts. Effects of P02, pH, osmotic pressure and Nations. Resp. Physiol. 14: 307–331.CrossRefGoogle Scholar
  20. Laverack, M.S. (1976). External proprioceptors. In “Structure and Function of Proprioceptors in the Invertebrates”. 1–63 Ed. P.J. Mill, Chapman & Hall: London.Google Scholar
  21. Lincoln, R.J. (1971). Observations of the effects of changes in hydrostatic pressure and illumination on the behaviour of some planktonic crustaceans. J. exp. Biol. 54: 677–688.Google Scholar
  22. McCutcheon, F.H. (1966). Pressure sensitivity, reflexes and buoyancy responses of teleosts. Anim. Behav. 14: 204–217.PubMedCrossRefGoogle Scholar
  23. Morgan, E. (1965). The activity rhythm of the amphipod Covophivm volutator (Pallas) and its possible relationship to change in hydrostatic pressure associated with the tides. J. anim. Ecol. 34: 731–746.CrossRefGoogle Scholar
  24. Morgan, E. (1969). The responses of Nephtys (Polychaeta: Annelida) to changes in hydrostatic pressure. J. exp. Biol. 50: 501–513.PubMedGoogle Scholar
  25. Morgan, E., Nelson-Smith, A. and Knight-Jones, E.W. (1964). Responses of Nymphon gracile (Pycnogonida) to pressure cycles of tidal frequency. J. exp. Biol. 41: 825–836.PubMedGoogle Scholar
  26. Morris, R.W. and Kittleman, L.R. (1967). Piezoelectric property of otoliths. Science 158: 368–370.PubMedCrossRefGoogle Scholar
  27. Naylor, E. and Atkinson, R.J.A. (1972). Pressure and the rhythmic behaviour of inshore marine animals. Symp. Soc. exp. Biol. 26: 395–415.PubMedGoogle Scholar
  28. Naylor, E. and Isaac, M.J. (1973). Behavioural significance of pressure responses in megalopa larvae of Catlinectes sapidus and Maoropipus sp. Mar. Behav. Physiol. 1: 341–350.Google Scholar
  29. Nisbet, I.C.T. and Drury, W.H. (1968). Short-term effects of weather on bird migration: A field study using multivariate statistics. Anim. Behav. 16: 496–530.CrossRefGoogle Scholar
  30. Qasim, S.Z.; Rice, A.L. and Knight-Jones, E.W. (1963). Sensitivity to pressure changes in teleosts lacking swimbladders. J. mar. biol. Ass. India 5: 289–293.Google Scholar
  31. Qutob, Z. (1962). The swimbladder of fishes as a pressure receptor. Arch, neerl. Zool. 15: 1–67.CrossRefGoogle Scholar
  32. Rice, A.L. (1964). Observations on the effects of changes of hydrostatic pressure on the behaviour of some marine animals. J. mar. biol. Ass. U.K. 44: 163–175.CrossRefGoogle Scholar
  33. Sleigh, M.A. and Macdonald, A.G. (editors). (1972). The effects of pressure on organisms. Symp. Soc. exp. Biol. 26: 516 pp.Google Scholar
  34. Sulkin, S.D. (1973). Depth regulation of crab larvae in the absence of light. J. exp. mar. Biol. Ecol. 13: 73–82.CrossRefGoogle Scholar
  35. Thorpe, W.H. and Crisp, D.J. (1947). Studies on plaston respiration III. J. exp. Biol. 24: 310–328.PubMedGoogle Scholar
  36. Tsvetkov, V.I. (1969). Sensitivity of certain freshwater fish to quick pressure changes (in Russian). Voprosy Ikhtiol. 9: 928–935.Google Scholar
  37. Tytler, P. and Blaxter, J.H.S. (1973). Adaptation by cod and saithe to pressure changes. Neth. J. Sea Res. 7: 31–45.CrossRefGoogle Scholar
  38. Tytler, P. and Blaxter, J.H.S. (1977). The effect of swimbladder deflation on pressure sensitivity in the saithe Pollachius virens. J. mar. biol. Ass. U.K. 57: 1057–106U.CrossRefGoogle Scholar
  39. Vasilenko, T.R.D. & Livanov, M.N. (1936). Oscillographic studies of the reflex function of the swimming bladder in fish. Bull. Biol. Med. Exp. U.S.S.R., 2: 264–266.Google Scholar
  40. Vidaver, W. (1972). 8 Pressure 8.2 Plants. In Marine Ecology Vol. 1 Pt 3, 1389–1405. Ed. 0. Kinne, Wiley Interscience: London, New York.Google Scholar
  41. Walsby, A.E. (1972). Gas-filled structures providing buoyancy in photosynthetic organisms. Symp. Soc. exp. Biol. 26: 233–250.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. H. S. Blaxter
    • 1
  1. 1.Dunstaffnage Marine Research LaboratoryOban, ArgyllScotland

Personalised recommendations