Adaptive Radiation of Mechanoreception

  • Hubert Markl
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 18)


Sensitivity to mechanical energy is a fundamental characteristic of living systems, from single cells to complex organisms, a sensitivity no less ubiquitous than that to thermal energy or radiation. There are, however, vast differences in reception thresholds and in filtering properties of the mechanoreceptive systems depending on the accessory structures which first accept the stimulus and transmit it to the sensory elements, more often than not transforming it on its way to them, until finally transduction from mechanical stimulus energy to excitation of the sensory cell membrane occurs (Burkhardt, 1960). These processes determine, together with the response characteristics of the sensory cells, to which specific form of mechanical energy a system is sensitive, whether sensitivity is directionally polarized or not and what the difference thresholds are for stimulus changes in the time and in the intensity domains. Central processing of the mechanoreceptive excitation can further affect the mechanoreceptive properties of the whole organism, e.g. by allowing to localize stimulus direction by comparing the input from several spatially distributed sense organs.


Sense Organ Sensory Cell Accessory Structure Angular Acceleration Adaptive Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arntz, B. (1971). Sinnesphysiologische Untersuchungen beim Beutefangverhalten von Nepa cinerea Linné. Diplomarbeit, Math. Naturwiss. Fak. Univ. Bonn.Google Scholar
  2. Arntz, B. (1975). Das Hörvermögen von Nepa cinerea L. Zur Funktionsweise der thorakalen Skolopidialorgane. J. Comp. Physiol. 96, 53–72.CrossRefGoogle Scholar
  3. Bässler, U. (1965). Proprioreceptoren am Subcoxal und Femur-Tibia-Gelenk der Stabheuschrecke Carausius morosus und ihre Rolle bei der Wahrnehmung der Schwerkraftrichtung. Kybernetik 2, 168–193.Google Scholar
  4. Baunacke, W. (1912). Statische Sinnesorgane bei Nepiden. Zool. Jahrb. Anat. 34, 179–342.Google Scholar
  5. Bischof, H.-J. (1974). Verteilung und Bewegungsweise der keulenförmigen Sensillen von Gryllus bimaculatus Deg. Biol. Zentralblatt 93, 449–457.Google Scholar
  6. Bischof, H.-J. (1975). Die keulenförmigen Sensillen auf den Cerci der Grille Gryllus bimaculatus als Schwererezeptoren. J. Comp. Physiol. 98, 277–288.CrossRefGoogle Scholar
  7. Bonke, D. (1975a). Der Bau und die Antwortcharakteristik des Schirmrezeptors aus dem Statoorgansystem von Nepa cinera L. (Hemiptera, Rhynchota). Verh. Dtsch. Zool. Ges. 1974, p. 42–45.Google Scholar
  8. Bonke, D. (1975b). Feinstruktur und Funktionsweise der statischen Sinnesorgane von Nepiden (Hemiptera). Diss. Techn. Hochschule Darmstadt.Google Scholar
  9. Brownell, Ph.H. (1977). Compressional and surface waves in sand: used by desert scorpions to locate prey. Science 197, 479–482.PubMedCrossRefGoogle Scholar
  10. Budelmann, B.-U. (1970). Die Arbeitsweise der Statolithenorgane von Octopus vulgaris. Z. Vergl. Physiol. 70, 278–312.CrossRefGoogle Scholar
  11. Budelmann, B.-U. (1975). Gravity receptor function in cephalopods with particular reference to Sepia officinalis. Fortschritte Zool. 23, 84–96.Google Scholar
  12. Budelmann, B.-U. (1976). Equilibrium receptor systems in molluscs. In: Structure and Function of Proprioceptors in the Invertebrates. P.J. Mill (Ed.), Chapman & Hall, London, p. 529–566.Google Scholar
  13. Budelmann, B.-U. (1977). Structure and function of the angular acceleration receptor systems in the statocysts of cephalopods. Symp. Zool. Soc. London 38, 309–324.Google Scholar
  14. Budelmann, B.-U. and Thies, G. (1977). Secondary sensory cells in the gravity receptor system of the statocyst of Octopus vulgaris. Cell. Tiss. Res. 182, 93–98.CrossRefGoogle Scholar
  15. Budelmann, B.-U. and Wolff, H.G. (1973). Gravity response from angular acceleration receptors in Octopus vulgaris. J. Comp. Physiol. 85, 283–290.CrossRefGoogle Scholar
  16. Burkhardt, D. (1960). Die Eigenschaften und Funktionstypen der Sinnesorgane. Ergebnisse Biol. 22, 226–267.CrossRefGoogle Scholar
  17. Cahn, Ph.H. (Ed.) (1967). Lateral line detectors. Indiana University Press, Bloomington.Google Scholar
  18. Cohen, M.J. and Dijkgraaf, S. (1961). Mechanoreception. In: T.H. Waterman (Ed.). The Physiology of Crustacea. Vol. 2, 65–108. Academic Press, New York.Google Scholar
  19. Dijkgraaf, S. (1934). Untersuchungen Uber die Funktion der Seitenorgane an Fischen. Z. Vergl. Physiol. 20, 162–214.CrossRefGoogle Scholar
  20. Dijkgraaf, S. (1963). The functioning and significance of the lateral line organs. Biol. Rev. 38, 51–105.PubMedCrossRefGoogle Scholar
  21. Darslar, K. (1973). Functional properties of trichobothria in the bug Pyrrhoooris apterus (L.). J. Comp. Physiol. 84, 175–184.CrossRefGoogle Scholar
  22. Eckert, R. (1972). Bioelectric control of ciliary activity. Science 176, 473–481.PubMedCrossRefGoogle Scholar
  23. Edwards, J.S. and Palka, J. (1974). The cerci and abdominal giant fibers of the house cricket, Aoheta domestious. I. Anatomy and physiology of normal adults. Proc. R. Soc. London B, 185, 83–103.CrossRefGoogle Scholar
  24. Flock, Ä. (1965). Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta oto-laryng. (Stockh.) Suppl. 199, 1–90.Google Scholar
  25. Flock, S. (1971). Sensory transduction in hair-cells. In: W.R. Loewenstein (Ed.): Handbook of Sensory Physiology I, p. 396–441, Springer Verlag, Berlin.Google Scholar
  26. Fräser, P.J. (1974). Interneurons in crab connectives (Carcinus maenas (L.)): directional statocyst fibers. J. Exp. Biol. 61, 615–628.PubMedGoogle Scholar
  27. Fräser, P.J. and Sandeman, D.C. (1975). Effects of angular and linear accelerations on semicircular canal interneurons of the crab Scylla serrata. J. Comp. Physiol. 96, 205–221.CrossRefGoogle Scholar
  28. Gaffal, K.P., Tichy, H., Theiss, J. and Seelinger, G. (1975). Structural polarities in mechano-sensitive sensilla and their influence on stimulus transmission (Arthropoda). Zoomorphologie 82, 79–103.CrossRefGoogle Scholar
  29. Gnatzy, W. und Schmidt, K. (1971). Die Feinstruktur der Sinneshaare auf den Cerci von Gvyllus bimaoulatus Deg. (Saltatoria, Gryllidae). I. Faden- und Keulenhaare. Zeitschr. Zellforsch. 122, 190–209.CrossRefGoogle Scholar
  30. Görner, P. (1966). A proposed transducing mechanism for a multiply-innervated mechanoreceptor (trichobothrium) in spiders. Cold Spring Harbor Symp. Quant. Biol. 30, 69–73.CrossRefGoogle Scholar
  31. Görner, P. und Andrews, P. (1969). Trichobothrien, ein Ferntastsinnesorgan bei Webspinnen (Araneen). Z. Vergl. Physiol. 64, 301–317.CrossRefGoogle Scholar
  32. Gordon, S.A. and Cohen, M.J. (Eds.) (1971). Gravity and the Organism. University of Chicago Press, Chicago.Google Scholar
  33. Harris, G.G. (1964). Considerations on the physics of sound production by fishes. In: W.N. Tavolga (Ed.): Marine Bio- Acoustics p. 233–247. Pergamon Press, Oxford.Google Scholar
  34. Harris, G.G. and van Bergeijk, W.A. (1962). Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J. Acoust. Soc. Amer. 34, 1831–1841.CrossRefGoogle Scholar
  35. Haskell, P.T. (1956). Hearing in certain Orthoptera. I. II. J. Exp. Biol. 33, 756-766; 767–776.Google Scholar
  36. Horn, E. (1970). Die Schwerkraftreception bei der Geotaxis des laufenden Mehlkäfers (Tenebirlo molitov). Z. Vergl. Physiol. 66, 343–354.CrossRefGoogle Scholar
  37. Horn, E. (1973). Die Verarbeitung des Schwerereizes bei der Geotaxis der höheren Bienen (Apidae). J. Comp. Physiol. 82, 379–406.CrossRefGoogle Scholar
  38. Horn, E. (1975). Mechanisms of gravity processing by leg and abdominal gravity receptors in bees. J. Insect. Physiol. 21, 673–679.CrossRefGoogle Scholar
  39. Horn, E. (1975). The contribution of different receptors to gravity orientation in insects. Fortschritte Zool. 23, 1–20.CrossRefGoogle Scholar
  40. Horn, E. and Kessler, W. (1975). The control of antennal lift movements and its importance on the gravity reception in the walking blowfly, Calliphora eitkrooephaLa. J. Comp. Physiol. 97, 189–203.CrossRefGoogle Scholar
  41. Horridge, G.A. (1966). Some recently discovered underwater vibration receptors in invertebrates. In: H. Barnes (Ed.): Some Contemporary Studies in Marine Science, p. 395–405. Allen and Unwin, London.Google Scholar
  42. Horridge, G.A. (1969). Statocysts of medusae and evolution of stereocilia. Tissue and Cell 1, 341–353.PubMedCrossRefGoogle Scholar
  43. Horridge, G.A. (1971). Primitive examples of gravity receptors and their evolution. In: S. Gordon and M.J. Cohen (Eds.): Gravity and the Organism, p. 203–221. University of Chicago Press, Chicago.Google Scholar
  44. Horridge, G.A. and Boulton, P.S. (1967). Prey detection by Chaetognatha via a vibration sense. Proc. Roy. Soc. B. 168, 413–419.CrossRefGoogle Scholar
  45. Hudspeth, A.J. and Corey, D.P. (1977). Sensitivity, polarity, and conductance change in the response of vertebrate hair-cells to controlled mechanical stimuli. Proc. Natl. Acad. Sei. USA 74, 2407–2411.CrossRefGoogle Scholar
  46. Jander, R., Horn, E. and Hoffmann, M. (1970). Die Bedeutung von Gelenkrezeptoren in den Beinen für die Geotaxis der höheren Insekten (Pterygota). Z. Vergl. Physiol. 66, 326–342.CrossRefGoogle Scholar
  47. Katsuki, Y. and Suga, N. (1960). Neural mechanisms of hearing in insects. J. Exp. Biol. 37, 279–290.Google Scholar
  48. Klinke, R. and Galley, N. (1974). Efferent innervation of vestibular and auditory receptors. Physiol. Reviews 54, 316–357.Google Scholar
  49. Klinke, R. and Schmidt, C.L. (1970). Efferent influence of the vestibular organ during active movement of the body. Arch. Ges. Physiol. 318, 325–332.CrossRefGoogle Scholar
  50. Kolle-Kralik, U. und Ruff, P.W. (1967). Vibrotaxis von Amoeba proteus (Pallas) im Vergleich mit der Cicilienschlagfrequenz der Beutetiere. Protistologica 3, 319–323.Google Scholar
  51. Krisch, B. (1973). Uber das Apikaiorgan (Statocyste) der Ctenophore Pleurobrachia pileus. Zeitschr. Zellforsch. 142, 241–262.CrossRefGoogle Scholar
  52. Lang, H. (1977). Mechanismen der Beuteerkennung und der intraspezifischen Kommunikation bei der räuberischen Wasserwanze Notoneota glauea L. und ihre Rolle bei der Aufrechterhaltung der Populationsstruktur. Diss. Universität Konstanz.Google Scholar
  53. Laverack, M.S. (1962a). Responses of cuticular sense organs of the lobster Homarus vulgaris (Crustacea). I. Hair-peg organs as water-current receptors. Comp. Biochem. Physiol. 5, 319–325.CrossRefGoogle Scholar
  54. Laverack, M.S. (1962b). Responses of cuticular sense organs of the lobster Homarus vulgaris (Crustacea). II. Hair-fan organs as pressure receptors. Comp. Biochem. Physiol. 6, 137–145.CrossRefGoogle Scholar
  55. Lindauer, M. und Nedel, J.O. (1959). Ein Schweresinnesorgan der Honigbiene. Z. Vergl. Physiol. 42, 334–364.CrossRefGoogle Scholar
  56. Lowenstein, O.E. (1974). Comparative Morphology and Physiology. In: H.H. Kornhuber (Ed.): Handbook of Sensory Physiology Vol. VI/1 p. 75–120, Springer Verlag, Berlin.Google Scholar
  57. Machemer, H. (1977). Motor activity and bioelectric control of cilia. Fortschritte Zool. 24, 195–210.Google Scholar
  58. Machemer, H. and de Peyer, J. (1977). Swimming sensory cells: Electrical membrane parameters, receptor properties, and motor control in ciliated Protozoa. Verh. Dtsch. Zool. Ges. 1977, p. 86–110.Google Scholar
  59. Markl, H. (1962). Borstenfelder an den Gelenken als Schweresinne-sorgane bei Ameisen und anderen Hymenopteren. Z. Vergl. Physiol. 45, 475–569.CrossRefGoogle Scholar
  60. Markl, H. (1964). Geomenotaktische Fehlorientierung bei Formica polyctena Foerster. Z. Vergl. Physiol. 48, 552–586.Google Scholar
  61. Markl, H. (1966a). Schwerkraftdressuren an Honigbienen. I. Die geomenotaktische Fehlorientierung. Z. Vergl. Physiol. 53, 328–352.CrossRefGoogle Scholar
  62. Markl, H. (1966b). Schwerkraftdressuren an Honigbienen. II. Die Rolle der schwererezeptorischen Borstenfelder verschiedener Gelenke für die Schwerekompassorientierung. Z. Vergl. Physiol. 53, 353–371.CrossRefGoogle Scholar
  63. Markl, H. (1969). Die Verständigung durch Stridulationssignale bei Ameisen. II. Erzeugung und Eigenschaften der Signale. Z. Vergl. Physiol. 60, 103–150.CrossRefGoogle Scholar
  64. Markl, H. (1971). Proprioceptive gravity perception in Hymenoptera. In: S. Gordon and M.J. Cohen (Eds.): Gravity and the Organism, p. 185–194. University of Chicago Press, Chicago.Google Scholar
  65. Markl, H. (1973). Leistungen des Vibrationssinnes bei wirbellosen Tieren. Fortschritte Zool. 21, 100–120.Google Scholar
  66. Markl, H. (1974). The perception of gravity and of angular acceleration in invertebrates. In: H.H. Kornhuber (Ed.): Hand-book of Sensory Physiology, Vol. VI/1, p. 17–74, Springer Ver-lag, Berlin.Google Scholar
  67. Markl, H. and Tautz, J. (1975). The sensitivity of hair receptors in caterpillars of Barathra brassicae L. (Lepidoptera, Noctuidae) to particle movement in a sound field. J. Comp. Physiol. 99, 79–87.CrossRefGoogle Scholar
  68. Mellon, D. (1963). Electrical responses from dually innervated tactile receptors on the thorax of the crayfish. J. Exp. Biol. 40, 137–148.Google Scholar
  69. Melvill Jones, G. (1974). The functional significance of semi-circular canal size. In: H.H. Kornhuber (Ed.): Handbook of Sensory Physiology Vol. VI/1, p. 171–184, Springer Verlag, Berlin.Google Scholar
  70. Minnich, D.E. (1925). The reactions of the larvae of Vanessa antiopa L. to sounds. J. Exp. Zool. 42, 443–469.CrossRefGoogle Scholar
  71. Minnich, D.E. (1936). The responses of caterpillars to sound. J. Exp. Zool. 72, 439–453.CrossRefGoogle Scholar
  72. Moran, D.T. and Carter Rowley III, J. (1975). High voltage and scanning electron microscopy of the site of stimulus reception of an insect mechanoreceptor. J. Ultrastruct. Res. 50, 38–46.PubMedCrossRefGoogle Scholar
  73. Murphey, R.K. and Mendenhall, B. (1973). Localization of receptors controlling orientation to prey by the back swimmer Notonecta undulata. J. Comp. Physiol. 84, 19–30.CrossRefGoogle Scholar
  74. Naitoh, Y. and Eckert, R. (1974). The control of ciliary activity in Protozoa. In: M.A. Sleigh (Ed.): Cilia and Flagella. p. 305–352. Acad. Press, London.Google Scholar
  75. Offutt, G.C. (1970). Acoustic stimulus perception by the american lobster, Homarus americanus (Decapoda). Experientia 26, 1276–1278.PubMedCrossRefGoogle Scholar
  76. Petrovskaya, E.D., Rojkova, G.J. and Tokareva, V.S. (1970). Single cercal receptor characteristics in the cricket (Gryllus domestious). (Russ. with Engl. Summary). Biofizika 15, 1112–1119.Google Scholar
  77. Piddington, R.W. (1971a). Central control of auditory input in the goldfish. I. Effect of shocks to the midbrain. J. Exp. Biol. 55, 569–584.PubMedGoogle Scholar
  78. Piddington, R.W. (1971b). Central control of auditory input in the goldfish. II. Evidence of action in the free-swimming animal. J. Exp. Biol. 55, 585–610.PubMedGoogle Scholar
  79. Pumphrey, R.J. and Rawdon-Smith, A.F. (1936). Hearing in insects: the nature of the response of certain receptors to auditory stimuli. Proc. Roy. Soc. B 121, 18–27.CrossRefGoogle Scholar
  80. Roberts, B.L. and Russell, I.J. (1972). The activity of lateral- line efferent neurones in stationary and swimming dogfish. J. Exp. Biol. 57, 435–448.PubMedGoogle Scholar
  81. Russell, I.J. (1971). The role of efferent fibres in the lateral- line system of Xenopus laevis. J. Exp. Biol. 54, 621–641.PubMedGoogle Scholar
  82. Russell, I.J. and Roberts, B.L. (1972). Inhibition of spontaneous lateral-line activity by efferent nerve stimulation. J. Exp. Biol. 57, 77–82.Google Scholar
  83. Sandeman, D.C. (1975). Dynamic receptors in the statocysts of crabs. Fortschritte Zool. 23, 185–191.CrossRefGoogle Scholar
  84. Sandeman, D.C. (1976). Spatial equilibrium in the arthropods. In: P.J. Mill (Ed.): Structure and Function of Proprioceptors in the Invertebrates, p. 485–527. Chapman and Hall, London.Google Scholar
  85. Sandeman, D.C. and Okajima A. (1972). Statocyst-induced eye movements in the crab Soy IIa serrata. I. The sensory input from the statocyst. J. Exp. Biol. 57, 187–204.PubMedGoogle Scholar
  86. Sandeman, D.C. and Okajima, A. (1973a). Statocyst-induced eye movements in the crab Scylla serrata. II. The responses of the eye muscles. J. Exp. Biol. 58, 197–212.Google Scholar
  87. Sandeman, D.C. and Okajima, A. (1973b). Statocyst-induced eye movements in the crab Scylla serrata. III. The anatomical projections of sensory and motor neurones and the responses of the motor neurones. J. Exp. Biol. 59, 17–38.Google Scholar
  88. Schmidt, K. (1973). Vergleichende morphologische Untersuchungen an Mechanorezeptoren der Insekten. Verh. Dtsch. Zool. Ges. 1971, p. 214–219.Google Scholar
  89. Schöne, H. (1959). Die Lageorientierung mit Statolithenorganen und Augen. Ergebn. Biol. 21, 161–209.CrossRefGoogle Scholar
  90. Schöne, H. (Ed.) (1975). Mechanisms of spatial perception and orientation as related to gravity. Fortschritte Zool. 23, 1-296, Fischer Verlag, Stuttgart.Google Scholar
  91. Schuijf, A. and Hawkins, A.D. (Eds.) (1976). Sound reception in fish. Developments in Aquaculture and Fisheries Science, 5. Elsevier Sei. Publ. Co., Amsterdam.Google Scholar
  92. Schwartz, E. (1965). Bau und Funktion der Seitenlinie des Streifenhechtlings Aplocheilus lineatus. Z. Vergl. Physiol. 50, 55–87.CrossRefGoogle Scholar
  93. Schwartz, E. (1971). Die Ortung von Wasserwellen durch Oberflschenfische. Z. Vergl. Physiol. 74, 64–80.CrossRefGoogle Scholar
  94. Schwartz, E. (1974). Lateral-line mechano-receptors in fishes and amphibians. In: A. Fessard (Ed.): Handbook of Sensory Physiology Vol. III/3, p. 257–278, Springer Verlag, Berlin.Google Scholar
  95. Schwartzkopff, J. (1974). Mechanoreception. In: M. Rockstein (Ed.): The Physiology of Insecta, Vol. II, p. 273–352, Academic Press, New York.Google Scholar
  96. Silvey, G.E., Dunn, P.A. and Sandeman, D.C. (1976). Integration between statocyst sensory neurons and oculomotor neurons in the crab Scylla serrate. II. The thread hair sensory receptors. J. Comp. Physiol. 108, 45–52.CrossRefGoogle Scholar
  97. Spinola, S.M. and Chapman, K.M. (1975). Proprioceptive indentation of the campaniform sensilia of cockroach legs. J. Comp. Physiol. 96, 257–272.CrossRefGoogle Scholar
  98. Tautz, J. (1977a). Mechanismen und biologische Bedeutung der Luftschallwahrnehmung bei Schmetterlingsraupen. Diss. Universität Konstanz, 188 p.Google Scholar
  99. Tautz, J. (1977b). Reception of medium vibration by thoracal hairs of caterpillars of Barathra brassicae L. I. Mechanical properties of the receptor hairs. J. Comp. Physiol, 118, 13–31.CrossRefGoogle Scholar
  100. Thurm, U. (1968). Steps in the transducer process of mechanoreceptors. Symp. Zool. Soc. London 23, 199–216.Google Scholar
  101. J.D. Carthy and G.E. Newell (Eds.): Invertebrate Receptors. Acad. Press, London.Google Scholar
  102. Thurm, U. (1969). General organization of sensory receptors. Rend. Scuola Intern. Fisica “E. Fermi”. XLIII Corso p. 44–68.Google Scholar
  103. Thurm, U. (1974). Mechanisms of electrical membrane responses in sensory receptors, illustrated by mechanoreceptors. In: L. Jaenicke (Ed.): Biochemistry of Sensory Functions, p. 367–390, Springer Verlag, Berlin.Google Scholar
  104. Thurm, U. (1977). Sensorische Transduktion–ein Steuerungsprozess. In: W. Hoppe, W. Lohmann, H. Markl, H. Ziegler (Eds.): Biophysik p. 391–402. Springer Verlag, Berlin.CrossRefGoogle Scholar
  105. van Bergeijk, W.A. (1964). Directional and non-directional hearing in fish. In: W.N. Tavolga (Ed.): Marine Bio-Acoustics, p. 281–299. Pergamon Press, Oxford.Google Scholar
  106. van Bergeijk, W.A. (1967). The evolution of vertebrate hearing. In: W.D. Neff (Ed.): Contributions to Sensory Physiology, Vol. 2, p. 1–49. Acad. Press, New York.Google Scholar
  107. Vinnikov, Ya.A. (1974). Sensory Reception. Cytology, Molecular Mechanisms and Evolution. Springer Verlag, Berlin.Google Scholar
  108. von Holst, E. (1950). Die Arbeitsweise des Statolithenapparates bei Fischen. Z. Vergl. Physiol. 32, 60–120.CrossRefGoogle Scholar
  109. Wells, M.J. (1960). Proprioception and visual discrimination of orientation in Octopus. J. Exp. Biol. 37, 489–499.Google Scholar
  110. Wendler, G. (1964). Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z. Vergl. Physiol. 48, 198–250.CrossRefGoogle Scholar
  111. Wendler, G. (1965). Über den Anteil der Antennen an der Schwererezeption der Stabheuschrecke Carausius morosus Br. Z. Vergl. Physiol. 51, 60–66.CrossRefGoogle Scholar
  112. Wendler, G. (1971). Gravity orientation in insects: the role of different mechanoreceptors. In: S. Gordon and M.J. Cohen: Gravity and the Organism.,p. 195–199. University of Chicago Press, Chicago.Google Scholar
  113. Wendler, G. (1972). Körperhaltung bei der Stabheuschrecke: ihre Beziehung zur Schwereorientierung und Mechanismen ihrer Regelung. Verh. Dtsch. Zool. Ges. 1971, p. 214–219.Google Scholar
  114. Wendler, G. (1975). Physiology and systems analysis of gravity orientation in two insect species (Carausius morosus, Calandra granaria). Fortschritte Zool. 23, 33–48.Google Scholar
  115. Wersäll, J. and Bagger-Sjöböck, D. (1974). Morphology of the vestibular sense organ. In: H.H. Kornhuber (Ed.): Handbook of Sensory Physiology Vol. VI/1, p. 123–170. Springer Verlag, Berlin.Google Scholar
  116. Wiese, K. (1976). Mechanoreceptors for near-field water displacements in crayfish. J. Neurophysiol. 39, 816–833.PubMedGoogle Scholar
  117. Wiese, K., Calabrese, R.L. and Kennedy, D. (1976). Integration of directional mechanosensory input by crayfish interneurons. J. Neurophysiol. 39, 834–843.PubMedGoogle Scholar
  118. Wolff, H.G. (1973). Statische Orientierung bei Mollusken. Fortschritte Zool. 21, 80–99.Google Scholar
  119. Wolff, H.G. (1975). Statocysts and geotactic behavior in gastropod molluscs. Fortschritte Zool. 23, 63–84.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Hubert Markl
    • 1
  1. 1.Fachbereich BiologieUniversität KonstanzKonstanzFed. Rep. Germany

Personalised recommendations