Skip to main content

Sensory Ecology of Mammals

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 18))

Abstract

Mammals inhabit a wide range of environments and exhibit a variety of sensory adaptations for specialized ecological niches. The discussion in the following pages will be restricted to vision and audition. Since even these senses cannot be fully treated in the space available, attention will be focused on the sensory ecology of selected mammalian groups which illustrate sensory adaptations to certain diverse habitats.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Autrum, H. and I. Thomas (1973). Comparative physiology of colour vision in animals. In: Handbook of Sensory Physiology. R. Jung, editor, Vol. VII/3, Part A, pp. 661–692. Springer- Verlag, N.Y.

    Google Scholar 

  • Balliet, R.F. and R.J. Schusterman (1971). Underwater and aerial visual acuity in the Asian “Clawless” Otter (Amblonyx oineria cineria). Nature (Lond.) 234: 305–306.

    Article  Google Scholar 

  • Bartholomew, G.A. and N.E. Collias (1962). The role of vocalization in the social behavior of the Northern elephant seal. Anim. Behav. 10: 7–14.

    Article  Google Scholar 

  • Blevins, C.E. and B.J. Parkins (1973). Functional anatomy of the porpoise larynx. Am. J. Anat. 138: 151–164.

    Article  PubMed  Google Scholar 

  • Bradbury, J.W. (1970). Target discrimination by the echolocating bat Vampyrum specturm. J. Exp. Zool. 173: 23–46.

    Article  PubMed  Google Scholar 

  • Bradbury, J.W. and F. Nottebohm (1969). The use of vision by the little brown bat, Myotis luoifugus3 under controlled conditions. Anim. Behav. 17: 480–485.

    Article  PubMed  Google Scholar 

  • Bridgeman, C.S. and K.U. Smith (1942). The absolute threshold of vision in the cat and man with observations on its relation to the optic cortex. Am. J. Physiol. 136: 463–466.

    Google Scholar 

  • Brown, A.M. and J.D. Pye (1975). Auditory sensitivity at high frequencies in mammals. In: Advances in Comparative Physio¬logy and Biochemistry. Vol. 6, pp. 1–73. 0. Lowenstein, editor, Academic Press, N.Y.

    Google Scholar 

  • Bullock, T.H., A.D. Grinnell, E. Ikezono, K. Kameda, Y. Katsuki, M. Nomoto, O. Sato, N. Suga and K. Yanagisawa (1968). Electrophysiological studies of central auditory mechanisms in cetaceans. Z. vgl. Physiol. 59: 117–156.

    Google Scholar 

  • Caspary, D. (1972). Classification of subpopulations of neurons in the cochlear nuclei of the kangaroo rat. Exp. Neurol. 37: 131–151.

    Article  PubMed  Google Scholar 

  • Chase, J. (1972). The role of vision in echolocating bats. Ph.D. Thesis. Indiana University, Bloomington, Indiana.

    Google Scholar 

  • Chase, J. and R.A. Suthers (1969). Visual obstacle avoidance by echolocating bats. Anim. Behav. 17: 201–207.

    Article  PubMed  Google Scholar 

  • Cooper, G.F. and J.G. Robson (1969a). The yellow colour of the lens of the grey squirrel (Soiurus carotinensis leueotis). J. Physiol. (Lond.) 203: 403–410.

    Google Scholar 

  • Cooper, G.F. and J.G. Robson (1969b). The yellow colour of the lens of man and other primates. J. Physiol. (Lond.) 203: 411– 417.

    Google Scholar 

  • DeValois, R.L. and G.H. Jacobs (1971). Vision. In: A. Schrier and F. Stollnitz, editors. Behavior of Non Human Primates. Vol. 3, pp. 107–157. Academic Press, N.Y.

    Google Scholar 

  • Diercks, K.J. (1972). Biological sonar systems: A bionics survey. Publication ARL-TR-72-34. Applied Research Laboratories, Univ. of Texas, Austin, Texas.

    Google Scholar 

  • Diercks, K.J., R.T. Trochta, C.F. Greenlaw and W.E. Evans (1971). Recording and analysis of dolphin echolocation signals. J. Acoust. Soc. Am. 49: 1729–1732.

    Article  Google Scholar 

  • Dodt, E. and J. Walther (1958). Spektrale Sensitivitat und Blutreflexion. Pflugers Arch. Ges. Physiol. 266: 187–192.

    Article  Google Scholar 

  • Dral, A.D.G. (1972). Aquatic and aerial vision in the bottle- nosed dolphin. Neth. J. Sea Res. 5: 510–513.

    Article  Google Scholar 

  • Dral, A.D.G. and L. Beumer (1974). The anatomy of the eye of the Ganges River Dolphin, Platanista gangetioa (Roxburgh, 1801). Z. Saugetierkd. 39: 143–167.

    Google Scholar 

  • Dudok van Heel, W.H. (1962). Sound and cetacea. Neth. J. Sea. Res. 1: 407–507.

    Article  Google Scholar 

  • Ellins, S.R. and F.A. Masterson (1974). Brightness discrimina-tion thresholds in the bat, Eptesious fuscus. Brain Behav. Evol. 9: 248–263.

    Article  PubMed  Google Scholar 

  • Evans, W.E. (1967). Vocalization among marine mammals. In: Marine Bio-Acoustics. W.N. Tavolga, editor. Vol. 2 pp. 159–186. Pergamon Press.

    Google Scholar 

  • Evans, W.E. and R.M. Haugen (1963). An experimental study of the echolocation ability of a California sea lion Za Zophns oalifornianus (Lesson). Bull. South. Calif. Acad. Sci. 62: 165–175.

    Google Scholar 

  • Fraser, F.C. and P.E. Purves (1954). Hearing in Cetaceans. Bull. Brit. Mus. (Nat. His.), Zool. 2: 103–116.

    Google Scholar 

  • Fraser, F.C. and P.E. Purves (1960). Hearing in Cetaceans. Bull. Brit. Mus. (Nat. His.), Zool. 7: 1–140.

    Google Scholar 

  • Gentry, R.L. and R.S. Peterson (1967). Underwater vision of the sea otter. Nature (Lond.) 216: 435–436.

    Article  Google Scholar 

  • Goodwin, G.G. and A.M. Greenhall (1961). A review of the bats of Trinidad and Tobago. Bull. Am. Mus. Nat. Hist. 122 (Article 3): 191–301.

    Google Scholar 

  • Gourevitch, G. and M. Hack (1966). Audibility in the rat. J. Comp. Physiol. Psychol. 62: 289–291.

    Article  PubMed  Google Scholar 

  • Griffin, D.R. (1958). Listening in the Dark. The Acoustic Orientation of Bats and Men. Yale University Press. New Haven.

    Google Scholar 

  • Griffin, D.R. (1971). The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim. Behav. 19: 55–61.

    Article  PubMed  Google Scholar 

  • Griffin, D.R., J. Friend and F. Webster (1965). Target discrim-ination by the echolocation of bats. J. Exp. Zool. 158: 155–168.

    Article  PubMed  Google Scholar 

  • Grinnell, A.D. (1963). The neurophysiology of audition in bats: Intensity and frequency parameters. J. Physiol. (Lond.) 167: 38–66.

    Google Scholar 

  • Gruschka, H.D., I.U. Borchers and J.G. Coble (1971). Aerodynamic noise produced by a gliding owl. Nature (Lond.) 233: 409–411.

    Article  Google Scholar 

  • Gunter, R. (1951). The absolute threshold for vision in the cat. J. Physiol. (Lond.) 114: 8–15.

    Google Scholar 

  • Hebel, R. (1976). Distribution of retinal ganglion cells in five mammalian species (pig, sheep, ox, horse, dog). Anat. Embryol. 150: 45–51.

    PubMed  Google Scholar 

  • Heffner, H., R. Ravizza and B. Masterton (1969). Hearing in primitive mammals. Ill Tree shrew (Tupaia gKs). J. Aud. Res. 9: 12–18.

    Google Scholar 

  • Herman, L.M., M.F. Peacock, M.P. Yunker, and C.J. Madsen (1975) Bottlenosed dolphin: Double-slit pupil yields equivalent aerial and underwater diurnal acuity. Science (Wash. D.C.) 189: 650–652.

    Article  Google Scholar 

  • Jacobs, D.W. (1972). Auditory frequency discrimination in the Atlantic bottlenose dolphin. Tursiops trunoatus Montague: A preliminary report. J. Acoust. Soc. Am. 52: 696–698.

    Article  Google Scholar 

  • Jacobs, D.W. and J.D. Hall (1972). Auditory thresholds of a fresh water dolphin, Inia geoffvensis Blainville. J. Acoust. Soc. Am. 51: 530–533.

    Article  Google Scholar 

  • Jamieson, G.S. and H.D. Fisher. 1970. Visual discriminations in the harbour seal, Phooa vitulina, above and below water. Vision Res. 10: 1175–1180.

    Article  PubMed  Google Scholar 

  • Jamieson, G.S. and H.D. Fisher (1972). The pinneped eye: A review. In: Functional Anatomy of Marine Mammals. R.J. Harrison, editor. Vol. 1, pp. 245–261. Academic Press, N.Y.

    Google Scholar 

  • Johnson, C.S. (1967). Sound detection thresholds in marine mammals. In: Marine Bio-Acoustics, W.N. Tavolga, editor, Vol. 2. pp. 247–255, Pergamon Press, Oxford.

    Google Scholar 

  • Johnson, G.L. (1893). Observations on the refraction and vision of the seal’s eye. Proc. Zool. Soc. Lond. pp. 719–723.

    Google Scholar 

  • Johnson, L. (1901). Contributions to the comparative anatomy of the mammalian eye, chiefly based on ophthalmoscopic examination. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 194: 1–82.

    Article  Google Scholar 

  • Kellogg, W.N. (1961). Porpoises and Sonar. University of Chicago Press, Chicago.

    Google Scholar 

  • Kellogg, W.N. and C.E. Rice (1964). Visual problem solving in a bottle-nose dolphin. Science (Wash. D.C.) 143: 1052–1055.

    Article  Google Scholar 

  • Lawrence, B. and W.E. Schevill (1956). The functional anatomy of the delphinid nose. Bull. Mus. Comp. Zool. Harv. Univ. 114: 103–151.

    Google Scholar 

  • Lay, D.M. (1972). The anatomy, physiology, functional significance and evolution of the specialized hearing organs of gerbilline rodents. J. Morphol. 138: 41–120.

    Article  PubMed  Google Scholar 

  • Lay, D.M. (1974). Differential predation on gerbils CMeriones) by the Little Owl, Athene brahma. J. Mammal. 55: 608–614.

    Article  Google Scholar 

  • Legouix, J.P. and A. Wisner (1955). Role functionnel des bulles tympaniques geantes de certaines rangeurs (Meriones). Acustica 5: 209–216.

    Google Scholar 

  • Lythgoe, J.N. (1972). The adaptation of visual pigments to the photic environment. In: Handbk. Sensory Physiol. H.J.A. Dartnall, editor. Vol. VII/I Photochemistry of Vision, pp. 529–565. Springer-Verlag, N.Y.

    Google Scholar 

  • Lythgoe, J.N. and H.J.A. Dartnall (1970). A deep sea rhodopsin11 in a mammal. Nature (Lond.) 227: 955–956.

    Article  Google Scholar 

  • McCormick, J.G., E.G. Wever, J. Palin and S.H. Ridgway (1970). Sound conduction in the dolphin ear. J. Acoust. Soc. Am. 48: 1418–1428.

    Article  PubMed  Google Scholar 

  • McFarland, W.N. (1971). Cetacean visual pigments. Vision Res. 11: 1065–1076.

    Article  PubMed  Google Scholar 

  • McFarland, W.N. and F.W. Munz (1975). The visible spectrum during twilight and its implications to vision. In: Light as an Ecological Factor: II, G.C. Evans, R. Bainbridge, and O. Rackham, editors, pp. 249–270. Blackwell Scientific. Oxford.

    Google Scholar 

  • Manske, U. and U. Schmidt (1976). Visual acuity of the vampire bat, Desmodus rotundus, and its dependence upon light intensity. Z. Tierpsychol. 42: 215–221.

    Article  PubMed  Google Scholar 

  • Miller, J. (1970). Audibility curve of the chinchilla. J. Acoust. Soc. Am. 48: 513–523.

    Article  PubMed  Google Scholar 

  • Möhl, B. (1967). Frequency discrimination in the common seal and a discussion of the concept of upper hearing limit. In: Underwater Acoustics Vol. 2. pp. 43–54.

    Google Scholar 

  • Möhl. B. (1968). Auditory sensitivity of the common seal in air and water. J. Aud. Res. 8: 27–38.

    Google Scholar 

  • Moushegian, G. and A.L. Rupert (1970). Response diversity of neurons in ventral cochlear nucleus of kangaroo rat to low- frequency tones. J. Neurophysiol. 33: 351–364.

    PubMed  Google Scholar 

  • Muntz, W.R.A. (1972). Inert absorbing and reflecting pigments. In: Handbk. Sensory Physiol. VII/1 Photochemistry of vision, pp. 529–565. H.J.A. Dartnall, editor. Springer-Verlag, N.Y.

    Google Scholar 

  • Norris, K.S. (1969). The echolocation of marine mammls. In: The Biology of Marine Mammals. H.T. Andersen, editor, pp. 391–423. Academic Press. N.Y.

    Google Scholar 

  • Norris, K.S., W.E. Evans and R.N. Turner (1967). Echolocation in an Atlantic bottle-nose porpoise during discrimination. In: Animal Sonar Systems: Biology and Bionics. R.G. Busnel, editor. Vol. 2 pp. 409–437. Laboratorie de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas, France.

    Google Scholar 

  • Norris, K.S. and G.W. Harvey (1974). Sound transmission in the porpoise head. J. Acoust. Soc. Am. 56: 659–664.

    Article  PubMed  Google Scholar 

  • Ordy, J.M. and T. Samorajski (1968). Visual acuity and ERG-CFF in relation to the morphologic organization of the retina among diurnal and nocturnal primates. Vision Res. 8: 1205–1225.

    Article  PubMed  Google Scholar 

  • Payne, R.S. and S. McVay (1971). Songs of humpback whales. Science (Wash. D.C.) 173: 587–597.

    Article  Google Scholar 

  • Payne, R.S. and B. Webb (1971). Orientation by means of long range acoustic signalling in baleen whales. In: Orientation: Sensory Basis. H.F. Adler, editor. Ann. Acad. Sci. 188: 110–141.

    Google Scholar 

  • Pedler, C. and R. Tilley (1969). The retina of a fruit bat (Pteropus giganteus Briinnich). Vision Res. 9: 909–922.

    Article  PubMed  Google Scholar 

  • Pepper, R.L. and J.V. Simmons, Jr. (1973). In-air visual acuity of the bottle-nosed dolphin. Exp. Neurol. 41: 271–276.

    Article  PubMed  Google Scholar 

  • Piggins, D.J. (1970) Refraction of the Harp Seal, Pagophilus groenlandicus (Erxleban 1777). Nature (Lond.) 227: 78–79.

    Article  Google Scholar 

  • Poulter, T.C. (1963). Sonar signals of the sea lion. Science (Wash. D.C.), 139: 753–755.

    Article  Google Scholar 

  • Poulter, T.C. (1966). The use of active sonar by the California sea lion (Zalophus oalifomianus (L)). J. Aud. Res. 6: 165– 173.

    Google Scholar 

  • Poulter, T.C. (1967). Systems of echolocation. In: Animal Sonar Systems: Biology and Bionics. R-G Busnel editor. Vol. I. pp. 157–186. Laboratorie de Physiologie Acoustique INRA-CNRZ, Jouy-en-Josas, France.

    Google Scholar 

  • Poulter, T.C. (1969). Sonar of penguins and fur seals. Proc. Calif. Acad. Sci. 36: 363–380.

    Google Scholar 

  • Poulter, T.C. and R.A. Jennings (1969). Sonar discrimination ability of the California sea lion, Zalophus califomianus. Proc. Calif. Acad. Sci. 36: 381–389.

    Google Scholar 

  • Price, L. (1963). Threshold testing with Bekesy audiometer. J. Speech Hearing Res. 6: 64–69.

    PubMed  Google Scholar 

  • Purves, P.E. (1966). Anatomy and physiology of the outer and middle ear in cetaceans. In: Whales, Dolphins and Porpoises. K.S. Norris, editor, Purves, P.E. 320–376. University of California Press Berkeley.

    Google Scholar 

  • Purves, P.E. (1967). Anatomical and experimental observations on the cetacean sonar system. In: Animal Sonar Systems: Biology and Bionics. R.-G. Busnel, editor. Vol. I. pp. 197– 270. Laboratorie de Physiologie Acoustique, INRA-CNRZ, Jouy- en-Josas, France.

    Google Scholar 

  • Putter, A. (1902). Die Augen der Wassersaugethiere. Zool. Jahrb. Abt. Allg. Zool. Physiol. Tiere. 99–402.

    Google Scholar 

  • Ramprashad, F., S. Corey and K. Ronald (1972). Anatomy of the Seal’s ear (Pagophilus groenlandieus) (Erxleben 1777). In: Functional Anatomy of Marine Mammals. R.J. Harrison, editor. Vol. 1 pp. 263–306. Academic Press, N.Y.

    Google Scholar 

  • Repenning, C.A. (1972). Underwater hearing in seals: Functional morphology. In: Functional Anatomy of Marine Mammals. R.J. Harrison, Editor. Vol. 1 pp. 307–331. Academic Press, N.Y.

    Google Scholar 

  • Reysenbach de Haan, F.W. (1957). Hearing in whales. Acta Oto-Laryngol. Suppl. 134: 1–114.

    Google Scholar 

  • Reysenbach de Haan, F.W. (1966). Listening underwater: Thoughts on sound and cetacean hearing. In: Whales, Dolphins and Porpoises. K.S. Norris, editor, pp. 583–595. University of California Press, Berkeley.

    Google Scholar 

  • Rivamonte, L.A. (1976). Eye model to account for comparable aerial and underwater acuities of the Bottle-nose dolphin. Netherlands J. Sea Res. 10: 491–498.

    Article  Google Scholar 

  • Rodieck, R.W. (1973). The Vertebrate Retina. Freeman and Co., San Francisco.

    Google Scholar 

  • Sales, G. and D. Pye (1974). Ultrasonic Communication by Animals. Chapman and Hall, London.

    Google Scholar 

  • Schevill, W.E. and B. Lawrence (1953). Auditory response of a bottle-nose, porpoise, Tursiops trunoatus, to frequencies above 100 kHz. J. Exp. Zool. 124: 147–165.

    Article  Google Scholar 

  • Schevill, W.E., W.A. Watkins and R.H. Backus (1964). The 20 cycle signals and Balaenoptera (fin whales). In: Marine Bio-Acoustics. W.N. Tavolga, editor, pp. 147–152. Pergamon Press, Oxford.

    Google Scholar 

  • Schevill, W.E., W.A. Watkins and C. Ray (1963). Underwater sounds of pinnipeds. Science (Wash. D.C.) 141: 50–53.

    Article  Google Scholar 

  • Schevill, W.E., W.A. Watkins, and C. Ray (1966). Analysis of underwater Odobenus calls with remarks on the development and function of the pharyngeal pouches. Zoologica. (N.Y.) 51: 103–111.

    Google Scholar 

  • Schusterman, R.J. (1967). Perception and determinants of underwater vocalization in the California sea lion. In: Animal Sonar Systems: Biology and Bionics. R-G. Busnel, editor: Vol. I. pp. 535–617. Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas. France.

    Google Scholar 

  • Schusterman, R.J, (1972). Visual acuity in pinnipeds. In: Behavior of Marine Mammals. H.E. Winn and B.L. 011a, editors. Vol. 2, pp. 469–492. Plenum Press, N.Y.

    Google Scholar 

  • Schusterman, R.J. (1974). Auditory sensitivity of a California sea lion to airborne sound. J. Acoust. Soc. Am. 56: 1248– 1251.

    Google Scholar 

  • Schusterman, R.J. and R.F. Balliet. (1969). Underwater barking by male sea lions (Zalophus califomianus). Nature (Lond.) 222: 1179–1181.

    Article  Google Scholar 

  • Schusterman, R.J., and R.F. Balliet (1970). Conditioned vocalizations as a technique for determining visual acuity thresholds in sea lions. Science (Wash. D.C.) 169: 498–501.

    Article  Google Scholar 

  • Schusterman, R.J. and R.F. Balliet (1971). Aerial and underwater visual acuity in the California sea lion (Zalophus calif omianus) as a function of luminance. Ann. N.Y. Acad. Sci. 188: 37–46.

    Article  PubMed  Google Scholar 

  • Schusterman, R.J., R.F. Balliet, and J. Nixon (1972). Underwater audiogram of the California sea lion by the conditioned vocalization technique. J. Exp. Anal. Behav. 17: 339–350.

    Article  PubMed  Google Scholar 

  • Schusterman, R.J., R.F. Balliet, and S. St. John (1970). Vocal display underwater by the gray seal, the harbor seal, and the stellar sea lion. Psychon. Sci. Sect. Anim. Physiol. Psychol. 18: 303–305.

    Google Scholar 

  • Schusterman, R.J. and B. Barrett (1973). Amphibious nature of visual acuity in the Asian “clawless” otter. Nature (Lond.) 244: 518–519.

    Article  Google Scholar 

  • Schusterman, R.J., R. Gentry, and J. Schmook (1967). Underwater sound production by captive California sea lions, Zalophus califomianus. Zoologica (N.Y.) 52: 21–24.

    Google Scholar 

  • Shaver, H.N. and T.C. Poulter (1967). Sea lion echo ranging. J. Acoust. Soc. Am. 42: 428–437.

    Article  PubMed  Google Scholar 

  • Shaver, H.N. and T.C. Poulter (1968). Sea lion echo ranging. J. Acoust. Soc. Am. 43: 1459.

    Article  Google Scholar 

  • Simmons, J.A. (1973). The resolution of target range by echolocating bats. J. Acoust. Soc. Am. 54: 157–173.

    Article  PubMed  Google Scholar 

  • Simmons, J.A., W.A. Lavender, B.A. Lavender, C.A. Doroshow, S.W. Kiefer, R. Livingston, and A.C. Scallet (1974). Target structure and echo spectral discrimination by echo- locating bats. Science (Wash. D.C.) 186: 1130–1132.

    Article  Google Scholar 

  • Simmons, J.A., D.J. Howell, N. Suga (1975). Information content of bat sonar echoes. Am. Sci. 63: 204–215.

    PubMed  Google Scholar 

  • Slijper, E.J. (1962). Whales. Basic Books Inc. N.Y.

    Google Scholar 

  • Stone, J. (1965). A quantitative analysis of the distribution of ganglion cells in the cat’s retina. J. Comp. Neurol. 124: 337–352.

    Article  PubMed  Google Scholar 

  • Suthers, R.A. (1966). Optomotor responses by echolocating bats. Science (Wash. D.C.) 152: 1102–1104.

    Article  Google Scholar 

  • Suthers, R.A. (1970). Vision, olfaction, taste. In: Biology of Bats. W.A. Wimsatt, editor. Vol. II pp. 265–309. Academic Press. N.Y.

    Google Scholar 

  • Suthers, R., J. Chase and B. Braford (1969). Visual form discrimination by echolocating bats. Biol. Bull. (Woods Hole) 137: 535–546.

    Article  Google Scholar 

  • Suthers, R.A., and N. Wallis (1970). The optics of the eyes of echolocating bats. Vision Res. 10: 1165–1173.

    Article  PubMed  Google Scholar 

  • Terhune, J.M., and K. Ronald (1971). The harp seal, Pagophitus gvoenlandicus (Erxleben, 1777) X. The air audiogram. Can. J. Zool. 49: 385–390.

    Article  PubMed  Google Scholar 

  • Terhune, J. M. and K. Ronald (1972). The harp seal, Pagophilus groenlandicus (Erxleben, 1777). III. The underwater audio-gram. Can. J. Zool. 50: 565–569.

    Article  PubMed  Google Scholar 

  • Terhune, J.M. and K. Ronald (1975a). Underwater hearing sensitivity of two ringed seals (Pusa hispida) Can. J. Zool. 53: 227–231.

    Article  PubMed  Google Scholar 

  • Terhune, J.M. and K. Ronald (1975b). The upper frequency limit of ringed seal hearing. Can. J. Zool. 54: 1226–1229.

    Article  Google Scholar 

  • Vakkur, G. and P.O. Bishop. (1963). The schematic eye in the cat. Vision Res. 3: 357–381.

    Article  Google Scholar 

  • Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Cranbrook Inst, of Science, Michigan.

    Book  Google Scholar 

  • Walls, G.L. and H.D. Judd (1933). The intraocular color filters of vertebrates. Brit. J. Ophthal. 17: 641–675 and 705–725.

    Google Scholar 

  • Watkins, W.A. and W.E. Schevill (1977). Sperm whale codas. J. Acoust. Soc. Am. 62: 1485–1490.

    Article  Google Scholar 

  • Weale, R.A. (1953). The spectral reflectivity of the cat’s tape- turn measured in situ. J. Physiol. (Lond.)ll9: 30–42.

    Google Scholar 

  • Weale, R.A. (1966). Why does the human retina possess a fovea? Nature (Lond.) 212: 255–256.

    Article  Google Scholar 

  • Weale, R.A. (1974). Natural history of optics. In: The Eye. H. Davson and L.T. Graham, Jr. editors. Vol. 6. pp. 1–110. Academic Press, N.Y.

    Google Scholar 

  • Webster, D.B. (1961). The ear apparatus of the kangaroo rat, Dipodomys. Am. J. Anat. 108: 123–148.

    Article  PubMed  Google Scholar 

  • Webster, D.B. (1962). A function of the enlarged middle ear cavities of the kangaroo rat, Dipodomys. Physiol. Zool. 35: 248–255.

    Google Scholar 

  • Webster, D.B. and M. Webster (1971). Adaptive value of hearing and vision in kangaroo rat predator avoidance. Brain Behav. Evol. 4: 310–322.

    Article  PubMed  Google Scholar 

  • Webster, D.B. and M. Webster. (1972). Kangaroo rat auditory thresholds before and after middle ear reduction. Brain Behav. Evol. 5: 41–53.

    Article  PubMed  Google Scholar 

  • Webster, D.B. and M. Webster (1975). Auditory systems of Heteromyidae: Functional morphology and evolution of the middle ear. J. Morphol. 146: 343–376.

    Article  PubMed  Google Scholar 

  • Webster, D.B. and M. Webster (1977). Auditory systems of hetero-myidae: Cochlear diversity. J. Morphol. 152: 153–169.

    Article  PubMed  Google Scholar 

  • Wever, E.G. and M. Lawrence (1954). Physiological Acoustics. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Wever, E.G., J.G. McCormick, J. Palin, and S. H. Ridgway (1971a). The cochlea of the dolphin, Tursiops truncatus: General Morphology. Proc. Natl. Acad. Sci. USA. 68: 2381–2385.

    Article  PubMed  Google Scholar 

  • Wever, E.G., J.G. McCormick, J. Palin, and S.H. Ridgway (1971b). Cochlea of the dolphin, Tursiops truncatus: The basilar membrane. Proc. Natl. Acad. Sci. USA 68: 2708–2711.

    Article  PubMed  Google Scholar 

  • Wever, E.G., J.G. McCormick, J. Palin and S.H. Ridgway (1971c). The cochlea of the dolphin, Tursiops truncatus: Hair cells and ganglion cells. Proc. Natl. Acad. Sci. USA 68: 2908–2912.

    Article  PubMed  Google Scholar 

  • Wever, E.G., J.G. McCormick, J. Palin, and S.H. Ridgway (1972). Cochlear structure in the dolphin, Lagenorhynchus obliquidens. Proc. Natl. Acad. Sci. USA. 69: 657–661.

    Article  PubMed  Google Scholar 

  • White, D., N. Cameron, P. Spong, and J. Bradford (1971). Visual acuity of the killer whale (Orcinus orca). Exp. Neurol. 32: 230–236.

    Article  PubMed  Google Scholar 

  • Whitteridge, D. (1965). Geometrical relations between the retina and the visual cortex. In: Mathematics and Computer Science in Biology and Medicine.

    Google Scholar 

  • John Blackburn, Leeds. Williams, T.C., L.C. Ireland, and J.M. Williams (1973). High altitude flights of the free-tailed bat, Tadarida brasiliensis observed with radar. J. Mammal. 54: 807–821.

    Google Scholar 

  • Williams, T.C. and J.M. Williams (1970). Radio tracking of homing and feeding flights of a neotropical bat, Phytlostomus hastatus. Anim. Behav. 18: 302–309.

    Article  Google Scholar 

  • Yolton, R.L., D.P. Yolton, J. Renz, and G.H. Jacobs. (1974). Pre- retinal absorbance in sciurid eyes. J. Mammal. 55: 14–20.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Suthers, R.A. (1978). Sensory Ecology of Mammals. In: Ali, M.A. (eds) Sensory Ecology. NATO Advanced Study Institutes Series, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3363-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3363-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3365-4

  • Online ISBN: 978-1-4684-3363-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics