Skip to main content

Electrolysis of Organic Compounds with Use of Ion-Exchange Membranes

  • Chapter
Progress in Electrochemistry of Organic Compounds 1

Abstract

The effectiveness of many electrochemical processes is determined by the presence of a porous partition or diaphragm, which separates the electrolyzer into cathodic and anodic compartments. In processes of electrosynthesis of organic compounds the diaphragm has usually the role of separating the electrolysis products so as to prevent reverse oxidation or reduction and also to prevent mutual contamination of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. K. M. Saldadze, A. B. Pashkov, and V. S. Titov, Ion-Exchange High-Molecular Compounds [in Russian], Goskhimizdat, Moscow (1960).

    Google Scholar 

  2. B. N. Laskorin, N. M. Smirnova, and M. N. Gitman, Ion-Exchange Membranes and Their Use [in Russian], Gosatomizdat, Moscow (1961).

    Google Scholar 

  3. F. Helferich, Ionites [Russian translation], IL, Moscow (1962).

    Google Scholar 

  4. J. R. Wilson (ed.) Demineralization by Electrodialysis [in Russian], Gosatomizdat, Moscow (1963).

    Google Scholar 

  5. G. Osbome, Synthetic Ion-Exchangers [Russian translation], Mir, Moscow (1964).

    Google Scholar 

  6. B. Tremillon, Separation on Ion-Exchange Resins [Russian translation], Mir, Moscow (1967).

    Google Scholar 

  7. Belgian Patent No. 623657:623691 (1963).

    Google Scholar 

  8. French Patent No. 1401175 (1965).

    Google Scholar 

  9. M. Baizer, J. Org. Chem., 29:1670 (1964).

    Article  CAS  Google Scholar 

  10. M. Baizer and J. Anderson, J. Electrochem. Soc., 111:215, 223(1964).

    Article  CAS  Google Scholar 

  11. M. Baizer, U. S. Patent No. 3250690 (1966).

    Google Scholar 

  12. L. V. Kaabak, A. P. Tomilov, and S. L. Varshavskii, Zh. Obshch. Khim., 34:2107 (1964).

    CAS  Google Scholar 

  13. M. Baizer and J. Anderson, J. Org. Chem., 30:1357 (1965).

    Article  CAS  Google Scholar 

  14. I. L. Knunyants and N. S. Vyazankin, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 238 (1957).

    Google Scholar 

  15. M. Baizer, Tetrahedron Letters, 15:973 (1963).

    Article  Google Scholar 

  16. I. Prescott, Chem. Eng., 72:238 (1965).

    Google Scholar 

  17. A. P. Tomilov, V. A. Klimov and S. L. Varshavskii, Khim. Prom., 12:892 (1967).

    Google Scholar 

  18. J. Riordan, Nitrogen, 40:43 (1967).

    Google Scholar 

  19. R. McKee and K. Brockman, Trans. Electrochem. Soc, 39:441 (1921).

    Google Scholar 

  20. G. Cauquis, Bull. Soc. Chim. France, 459 (1966).

    Google Scholar 

  21. M. Urabe, T. Sejama, and W. Sakai, J. Electrochem. Soc, Japan, 28:E69 (1960).

    Google Scholar 

  22. S. Okada and T. Eguchi, Japanese Patent No. 208257 (1954).

    Google Scholar 

  23. E. Silversmith and W. Sloan, U. S. Patent No. 3197392 (1965).

    Google Scholar 

  24. C. Mantel, Chem. Engin., 74:128 (1967).

    Google Scholar 

  25. G. Bodamer, U. S. Patent No. 2921005 (1960).

    Google Scholar 

  26. German Patent No. 1002750 (1960).

    Google Scholar 

  27. G. Khonff, A. Myuller and F. Venger, Polyamides, Goskhimizdat, Moscow (1958).

    Google Scholar 

  28. M. Ya. Fioshin, A. I. Kamneva, Sh. M. Itenberg, L. I. Kazakova, and Yu. A. Ershova, Khim. Prom., 4:263 (1963).

    Google Scholar 

  29. K. Oda and M. Murakosi, Japanese Patent No. 2023 (1958).

    Google Scholar 

  30. G. Bodamer, U. S. Patent No. 2737486 (1956).

    Google Scholar 

  31. D. Kato, J. Arimoti, I. Arai, and T. Arakava, Japanese Patent No. 6517 (1964).

    Google Scholar 

  32. G. S. Supin, Zh. Fiz. Khim., 34:4 (1960).

    Google Scholar 

  33. N. A. Dzbanovskii, V. V. Todikov, L. D. Borkhi, and R. T. Khleborodova, Trudy IREA, No. 25, 427 (1963).

    Google Scholar 

  34. V. V. Krokhv, Zh. Prikl. Khim., 37:2321 (1964).

    CAS  Google Scholar 

  35. K. D. Nenitzesku, Organic Chemistry [Russian translation], Vol. 2, IL, Moscow (1963), p. 376.

    Google Scholar 

  36. L. D. Bobrovnik and I. M. Litvak, Trudy Kievsk. Tekhnol. Inst. Pishch. Prom., No. 27, 31 (1963).

    Google Scholar 

  37. T. Astrup and A. Stage, Acta Chem. Scand., 6:1302 (1952).

    Article  CAS  Google Scholar 

  38. A. Di Benedetto and E. Lightfoot, Ind. Eng. Chem., 50:691 (1958).

    Article  Google Scholar 

  39. T. Yamabe, M. Seno, and H. Takai, J. Chem. Soc Japan, Industr. Chem. Soc, 64:556 (1961).

    Article  Google Scholar 

  40. S. Itoi and T. Ucunomie, Repts. Res. Lab., Asahi Glass Co., 15:171 (1965).

    CAS  Google Scholar 

  41. J. Bliney, H. Yardley, and J. Dumber, Nature, 177:83 (1956).

    Article  Google Scholar 

  42. A. Peers, J. Appl. Chem., 8:59 (1958).

    Article  CAS  Google Scholar 

  43. I. I. Isaev and V. A. Shaposhnik, Trudy Laboratorii Ionoobmennykh Protsessov i Sorbtsii, No. 1, Nauchn. Fiz. Khim., Inst. Izd. Voronezhsk, Univ. (1966), p. 70.

    Google Scholar 

  44. E. Tszin-shen, Shen’ Tszy-Min, and U. Tun-li, Gaofen’tsza tunsyun’, 6:389 (1964).

    Google Scholar 

  45. P. Wakasa, K. Saotome, and H. Kawamoto, Japanese Patent No. 3813 (1964).

    Google Scholar 

  46. R. T. Khleborodova and A. I. Ryazanova, in: Advances in Electrochemistry of Organic Compounds [in Russian], Nauka, Moscow (1968), p. 73.

    Google Scholar 

  47. V. S. Sadikov, Practical Work on Proteins [in Russian], LGU (1938), p. 194.

    Google Scholar 

  48. W. Sautsch, G. Manecke, and W. Broser, Nature, 8B:232 (1953).

    Google Scholar 

  49. J. Traxler, U. S. Patent No. 3051640 (1962).

    Google Scholar 

  50. Y. Hara, J. Chem. Soc. Japan, Ind. Chem. Sec, 65:885 (1962).

    CAS  Google Scholar 

  51. Y. Hara, Bull. Chem. Soc. Japan, 36:1373 (1963).

    Article  CAS  Google Scholar 

  52. A. I. Ryazanov, Z. V. Gol’tseva, R. T. Khleborodova, and L. M. Butorina, Trudy IREA, No. 30, 69 (1967).

    Google Scholar 

  53. A. I. Ryazanov, Z. V. Gol’tseva, R. T. Khleborodova, and L. M. Butorina, Trudy IREA, No. 30, 77 (1967).

    Google Scholar 

  54. M. I. Shchegrov and A. G. Koblyanskii, Izv. Vuzov, Pishchevaya Tekhnologiya, 6:49 (1961).

    Google Scholar 

  55. D. Corming, Proc. Sympos. Less. Common Means Separat., Birmingham, 1963, London, Inst. Chem. Engrs. (1964), p. 48.

    Google Scholar 

  56. S. Partrige and A. Peers, J. Appl. Chem., 8:49 (1958).

    Article  Google Scholar 

  57. L. Tye, British Patent No. 845938 (1960).

    Google Scholar 

  58. H. Sanders, and J. Parsi, Proc. Sympos. Less. Common Means Separat., Birmingham, 1963, London, Inst. Chem. Engrs. (1964), p. 16.

    Google Scholar 

  59. A. Warshaw, U. S. Patent No. 2688572 (1954).

    Google Scholar 

  60. H. Barger, Zucker, 7:80 (1954).

    Google Scholar 

  61. A. Anderson and C. Wylam, Chem. a. Inc. (Rev.), 191 (1956).

    Google Scholar 

  62. I. Buriánek and D. Šlechtová, Listy Cukravarn, 75:62, 66 (1959).

    Google Scholar 

  63. I. Buriánek and D. Šlechtová, Listy Cukravarn, 75:82 (1959).

    Google Scholar 

  64. I. Buriánek and D. Šlechtová, Listy Cukravam, 76:193 (1960).

    Google Scholar 

  65. I. Buriánek, D. Šlechtová, and O. Lisy, Listy Cukravam, 76:217 (1960).

    Google Scholar 

  66. M. Leszko, Gaz. Cukrown., 62:246 (1960).

    Google Scholar 

  67. M. Leszko, Gaz. Cukrown., 64:38 (1962).

    CAS  Google Scholar 

  68. L. D. Bobrovnik and I. M. Litvak, Sakharnaya Prom., 11:18 (1962).

    Google Scholar 

  69. D. M. Leibovich and I. F. Zelikman, Sakharnaya Prom., 9:30 (1963).

    Google Scholar 

  70. I. Buriánek, and P. Kadlec, Listy Cukrovarn., 81:260 (1965).

    Google Scholar 

  71. P. Kadlec, Listy Cukrovarn., 82:37 (1966).

    Google Scholar 

  72. R. Bretschneider, I. Buriánek, and P. Kadles, Czech. Patent No. 117128(1965).

    Google Scholar 

  73. D. I. Ryabchikov and I. K. Tsitovich, Ion-Exchange Resins and Their Use [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962), p. 118.

    Google Scholar 

  74. R. Block and W. Wingerd, U. S. Patent No. 2758965 (1958).

    Google Scholar 

  75. R. Block and W. Wingerd, U. S. Patent No. 2830905 (1958).

    Google Scholar 

  76. T. Yamabe and I. Tanaka, J. Chem. Soc., Japan, Ind. Chem. Sec, 63:1342 (1960).

    CAS  Google Scholar 

  77. W. Wingerd and R. Block, Dairy Sci., 27:932 (1954).

    Article  Google Scholar 

  78. I. Kamii, T. Tanaka, and T. Yamabe, J. Pharmac Soc. Japan, 81:931 (1961).

    CAS  Google Scholar 

  79. G. Briere and N. Felici, C. r. Acad. Sci., 259:3237 (1964).

    CAS  Google Scholar 

  80. G. Briere, N. Felici, and J. Filippini, C. r. Acad. Sci., 261:5097 (1965).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Plenum Publishing Company Ltd.

About this chapter

Cite this chapter

Fioshin, M.Y. (1971). Electrolysis of Organic Compounds with Use of Ion-Exchange Membranes. In: Frumkin, A.N., Érshler, A.B. (eds) Progress in Electrochemistry of Organic Compounds 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3339-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3339-5_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3341-8

  • Online ISBN: 978-1-4684-3339-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics