Advertisement

Categories

Chapter
  • 169 Downloads
Part of the Progress in Mathematics book series (PM, volume 9)

Abstract

The present survey includes papers reviewed in the “Mathematics” section of Referativnyi Zhurnal from October 1962 to October 1967. During the period indicated there was a sharp increase in the number of publications on various aspects of category theory: the previous survey [17] comprised about 40 papers, while now there are more than two hundred. The authors have done their best to pinpoint the directions of research which in their opinion are becoming consolidated and to illuminate in more detail the fundamental papers in each direction; at the same time, certain papers are mentioned only in the Literature Cited section. On the other hand, the extensive group of papers by Ehresmann [70–107] on categories of structured structures is almost not at all reflected in this survey for two main reasons: first, the too-free use of the concept of class has not received wide support in the literature; second, the large number of awkward definitions makes it impossible to present EhresmamVs results within the scope of this article; the interested reader can refer to Ehresmann’s book [95].

Keywords

Free Product Natural Transformation Category Theory Universal Algebra Inverse Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. D. Berishvili, “Direct and inverse limits,” Soobshch. Akad. Nauk GruzSSR, 43(3): 535–542 (1966).zbMATHGoogle Scholar
  2. 2.
    G. Kh. Berman, “Functors in the category of locally convex spaces,” Dokl. Akad. Nauk SSSR, 154(3): 497–499 (1964).MathSciNetGoogle Scholar
  3. 3.
    I. E. Burmistrovich, “Embedding of an additive category into a category with direct products,” Dokl. Akad. Nauk SSSR, 132(6): 1235–1237 (1960).Google Scholar
  4. 4.
    I. M. Gel’fand and G. E. Shilov, “Categories of finite-dimensional spaces,” Vestn. Mosk. Univ., Mat., Mekh., No. 4, 27–48 (1963).Google Scholar
  5. 5.
    N. I. Glebov, “The structure of the class of R-tests for equivalence,” in: Problems of Cybernetics, No. 9, Fizmatgiz, Moscow (1963), pp. 103–122.Google Scholar
  6. 6.
    A. Grothendieck, “Sur quelques points d’algebre homologique,” Tohoku Math. J., 9:119–221 (1957).MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kh. N. Inasaridze, “On the theory of extensions in categories,” Soobshch. Akad. Nauk GruzSSR, 30(5): 537–544 (1963).MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kh. N. Inasaridze, “Universal functors,” Soobshch. Akad. Nauk GruzSSR, 38(3): 513–520 (1965).MathSciNetzbMATHGoogle Scholar
  9. 9.
    L. M. Kissina and A. S. Shvarts, “On the description of duality of functors,” Dokl. Akad. Nauk SSSR, 167(2): 282–285 (1966).MathSciNetGoogle Scholar
  10. 10.
    V. V. Kuznetsov, “Duality of functors in the category of sets with base points,” Dokl. Akad. Nauk SSSR, 159(4): 738–741 (1964).MathSciNetzbMATHGoogle Scholar
  11. 11.
    A. G. Kurosh, “Radicals of rings and algebras,” Mat. Sb., 33(1): 13–26 (1953).Google Scholar
  12. 12.
    A. G. Kurosh, “Direct decompositions in algebraic categories,” Tr. Mosk. Mat. Obshch., Vol. 8, pp. 391–412 (1959); Vol. 9, p. 562 (1960).Google Scholar
  13. 13.
    A. G. Kurosh, “Radicals in group theory,” Sibirsk. Mat. Zh., 3(6): 912–931 (1962).zbMATHGoogle Scholar
  14. 14.
    A. G. Kurosh, A. Kh. Livshits, and E. G. Shurgeifer, “Foundations of the theory of categories,” Usp. Mat. Nauk, 15(6): 3–52 (1960).Google Scholar
  15. 15.
    A. Kh. Livshits, “Summation of mappings and the concept of a center in categories,” Mat. Sb., 60(2): 159–184 (1963).MathSciNetGoogle Scholar
  16. 16.
    A. Kh. Livshits, “Category-theoretical foundations of duality, radicality, and semisimplicity,” Sibirsk. Mat. Zh., 5(2): 319–336 (1964).zbMATHGoogle Scholar
  17. 17.
    A. Kh. Livshits, M. S. Tsalenko, and E. G. Shul’geifer, “Category theory,” in: Algebra. Topology. 1962, Progress in Science, VINITI Akad. Nauk SSSR, Moscow (1963), pp. 90–106.Google Scholar
  18. 18.
    A. Kh. Livshits, M. S. Tsalenko, and E. G. Shul’geifer, “Varieties in categories,” Mat. Sb., 63(4): 554–581 (1964).MathSciNetGoogle Scholar
  19. 19.
    S. MacLane, Homology, Springer-Verlag, Berlin (1963), 422 pp.zbMATHCrossRefGoogle Scholar
  20. 20.
    A. I. Mal’tsev, “Determining relations in categories,” Dokl. Akad. Nauk SSSR, 119(6): 1095–1098 (1958).MathSciNetzbMATHGoogle Scholar
  21. 21.
    B. S. Mityagin and A. S. Shvarts, “Functors in categories of Banach spaces,” Usp. Mat. Nauk, 19(2): 65–130 (1964).zbMATHGoogle Scholar
  22. 22.
    A. Pultr and Z. Hedrlin, “The representation of small categories,” Dokl. Akad. Nauk SSSR, 160(2): 284–286 (1965).MathSciNetGoogle Scholar
  23. 23.
    Yu. M. Ryabukhin, “Radicals in categories,” Izv. Akad. Nauk MoldSSR, Ser. Fiz.-Mat. i Tekhn. Nauk, No. 6, 58–74 (1964).Google Scholar
  24. 24.
    V. Trnkova, “On the theory of categories,” Comment. Math. Univ. Carolinae, 3(4): 9–35 (1962).MathSciNetGoogle Scholar
  25. 25.
    D. B. Fuks, “Homotopy duality,” Dokl. Akad. Nauk SSSR, 141(4): 818–821 (1961).MathSciNetGoogle Scholar
  26. 26.
    D. B. Fuks, “Natural mappings of functors in the category of topological spaces,” Mat. Sb., 62(2): 160–179 (1963).MathSciNetGoogle Scholar
  27. 27.
    D. B. Fuks and A.S. Shvarts, “On the homotopy theory of functors in the category of topological spaces,” Dokl. Akad. Nauk SSSR, 143(3): 543–546 (1962).MathSciNetGoogle Scholar
  28. 28.
    A. Ya. Khelemskii, “Algebras of nilpotent operators and the categories connected with them,” Vestn. Mosk. Univ., Mat., Mekh., No. 4, 49–55 (1963).Google Scholar
  29. 29.
    M. S. Tsalenko, “Proper unions and special subdirect sums in categories,” Mat. Sb., 57(1): 75–94 (1962).MathSciNetGoogle Scholar
  30. 30.
    M. S. Tsalenko, “The completion of categories by free and direct unions of objects,” Mat. Sb., 60(2): 235–256 (1963).MathSciNetGoogle Scholar
  31. 31.
    M. S. Tsalenko, “Correspondences over a quasiexact category,” Dokl. Akad. Nauk SSSR, 155(2): 292–294 (1964).MathSciNetGoogle Scholar
  32. 32.
    M. S. Tsalenko, “R-complete subcategories of the category of groups,” Usp. Mat. Nauk, 21(1): 174–175 (1966).Google Scholar
  33. 33.
    A. S. Shvarts, “Duality of functors,” Dokl. Akad. Nauk SSSR, 148(2): 288–291 (1963).MathSciNetGoogle Scholar
  34. 34.
    E. G. Shul’geifer, “On the general theory of radicals in categories,” Mat. Sb., 51(4): 487–500 (1960).MathSciNetGoogle Scholar
  35. 35.
    E. G. Shul’geifer, “Proper embeddings of categories,” Usp. Mat. Nauk, 17(3): 212–213 (1962).Google Scholar
  36. 36.
    E. G. Shul’geifer, “Proper embeddings of categories,” Mat. Sb., 61(4): 467–503 (1963).MathSciNetGoogle Scholar
  37. 37.
    E. G. Shul’geifer, “The structure of the ideals of an object of a category. II,” Mat. Sb., 62(3): 335–344 (1963).MathSciNetGoogle Scholar
  38. 38.
    E. G. Shul’geifer, “Functorial characterization of strict radicals in categories,” Sibirsk. Mat. Zh., 7(6): 1412–1421 (1966).Google Scholar
  39. 39.
    J. M. Adams, “Abstract homotopy theory in categories,” Doctoral dissertation, New Mexico State University, 1963, 35 pp. Dissertation Abstr., 24(4): 1625 (1963).Google Scholar
  40. 40.
    S. A. Amitsur, “A general theory of radicals. II,” Am. J. Math, 76:100–125 (1954).MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    P.C. Baayen, “Opmerkingen over Kowalsky’s artikel: ‘Kategorien topolo-gischer Räume’,” Rapp. Math. Centrum., No. 14, p. 6 (1962).Google Scholar
  42. 42.
    L. Badescu, “Functori Adjuncti Contravarianti,”Studii Si Cercetǎri Mat. Acad. RSR, 17(7): 1145–1152 (1965).MathSciNetzbMATHGoogle Scholar
  43. 43.
    L. Badescu, “Extension de la definit on des foncteurs derives pour les categories abeliennes,” Rev. Roumaine Math. Pures et Appl., 11(1): 103–107 (1966).MathSciNetGoogle Scholar
  44. 44.
    C. Bǎnicǎ and N. Popescu, “Quelques considerations sur l’exactitude des foncteurs,” Bull. Math. Soc. Sci. Math. et Phys. (RPR), 7(3–4): 143–147 (1963).Google Scholar
  45. 45.
    C. Bǎnicǎ and N. Popescu, “Sur les catégories préabeliennes,” Rev. Roumaine Math. Pures, et Appl. (RPR), 10(5): 621–633 (1965).Google Scholar
  46. 46.
    C. Bǎnicǎ and N. Popescu, “Asupra categoriilor preabeliene,” Studii Si Cercetǎri Mat. Acad. RSR, 17(4): 563–575 (1965).Google Scholar
  47. 47.
    L. Bégueri and G. Poitou, “‘Diagram-chasing’ dans les catégories abéliennes,” Bull. Soc. Math. France, 93(4): 323–332 (1965).MathSciNetzbMATHGoogle Scholar
  48. 48.
    J. Benabou, “Catégories avec multiplication,” Compt. Rend. Acad. Sci., 256(9):1887–1890 (1963).MathSciNetzbMATHGoogle Scholar
  49. 49.
    J. Benabou, “Algèbre élémentaire dans les catégories avec multiplication,” Compt. Rend. Acad. Sci., 258(3): 771–774 (1964).MathSciNetzbMATHGoogle Scholar
  50. 50.
    J. Benabou, “Catégories relatives,” Compt. Rend. Acad. Sci., 260(14): 3824–3827 (1965).MathSciNetzbMATHGoogle Scholar
  51. 51.
    P. Boero, “Categorie omologiche,” Rend. Semin. Mat. Univ. Padova, 35(2): 267–298 (1965).MathSciNetzbMATHGoogle Scholar
  52. 52.
    R. Bonyun, “On the square of a homological monoid,” Can. Math. Bull., 9(1): 49–55 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    J. Braconnier, “Les catégories,” Cahiers Rhodaniens, No. 10, pp. 1/1–1/12 (1961).Google Scholar
  54. 54.
    J. Bucur, “Fonctions définies sur le spectre d’une catégorie et théories de décompositions,” Rev. Roumaine Math. Pures et Appl. (RPR), 9(6): 583–588 (1964).MathSciNetzbMATHGoogle Scholar
  55. 55.
    L. Bukovsky, Z. Hedrlin, and A. Pultr, “On topological representation of semigroups and small categories,” Mat.-Fyz. Casop., 15(3): 197–199 (1965).MathSciNetGoogle Scholar
  56. 56.
    W. Burgess, “The meaning of mono and epi in some familiar categories,” Can. Math. Bull., 8(6): 759–769 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    P. Dedecker and J. Mersch., “Précatégories et relations d’équivalence dans les catégories,” Compt. Rend. Acad. Sci., 256(23): 4811–4814 (1963).MathSciNetzbMATHGoogle Scholar
  58. 58.
    S. E. Dickson, “A torsion theory for Abelian categories,” Trans. Am. Math. Soc, 121(1): 223–235 (1966).zbMATHCrossRefGoogle Scholar
  59. 59.
    H. P. Doctor, “The categories of Boolean lattices, Boolean rings, and Boolean spaces,” Can. Math. Bull, 7(2): 245–252 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    K. Drbohlav, “A note on epimorphisms in algebraic categories,” Comment. Math. Univ. Carolinae, 4(2): 81–85 (1963).MathSciNetzbMATHGoogle Scholar
  61. 61.
    K. Drbohlav, “Concerning representations of small categories,” Comment. Math. Univ. Carolinae, 4(4): 147–151 (1963).MathSciNetzbMATHGoogle Scholar
  62. 62.
    K. Drbohlav, “A categorical generalization of a theorem of G. Birkhoff on primitive classes of universal algebras,” Comment. Math. Univ. Carolinae, 6(1): 21–41 (1965).MathSciNetzbMATHGoogle Scholar
  63. 63.
    L. Dubikajtis and J. Iwanski, “An independent system of axioms defining the Ehresmann groupoid,” Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron. et Phys., 12(111): 687–693 (1964).MathSciNetzbMATHGoogle Scholar
  64. 64.
    A. Duma, “Asupra categoriilor de diagrame,” Studii Si Cercetǎri Mat. Acad. RSR, 17(5): 803–807 (1965).MathSciNetzbMATHGoogle Scholar
  65. 65.
    A. Duma, “Sur les catégories des diagrammes,” Rev. Roumaine Math. Pures et Appl. (RPR), 10(5): 653–657 (1965).MathSciNetGoogle Scholar
  66. 66.
    B. Eckmann and P. J. Hilton, “Grouplike structures in general categories. I,” Math. Ann., 145(3): 227–255 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    B. Eckmann and P. J. Hilton, “Grouplike structures in general categories. II,” Math. Ann., 151(2): 150–186 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    B. Eckmann and P. J. Hilton, “Grouplike structures in general categories. HI,” Math. Ann., 150(2): 165–187 (1963).MathSciNetCrossRefGoogle Scholar
  69. 69.
    B. Eckmann and H. Kleisli, “Algebraic homotopy groups and Frobenius algebras. HI,” J. Math., 6(4): 533–552 (1962).MathSciNetzbMATHGoogle Scholar
  70. 70.
    C. Ehresmann, “Catégories inductives et pseudogroupes,” Ann. Inst. Fourier, Vol. 10, pp. 307–332 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    C. Ehresmann, “Especes des structures locales,” Semin. Topol. et Geom. Different., Fac. Sci. Paris, Vol. 3, pp. 1–24 (1960–1962).Google Scholar
  72. 72.
    C. Ehresmann, “Elargissements des categories,” Semin. Topol. et Geom. Différent., Fac. Sci. Paris, Vol. 3, pp. 25–73 (1960–1962).Google Scholar
  73. 73.
    C. Ehresmann, “Catégories des foncteurs types,” Rev. Union. Math. Argent, y Asoc. Fis. Argent, Vol. 20, pp. 194–209 (1962).MathSciNetzbMATHGoogle Scholar
  74. 74.
    C. Ehresmann, “Catégories structurées, III. Quintettes et applications covari-antes,” Cahiers Semin. Topol. et Géom. Différent., Fac. Sci. Paris, Vol. 5 (1963).Google Scholar
  75. 75.
    C. Ehresmann, “Catégories structurées quotients,” Cahiers Semin. Topol. et Geom. Différent., Fac. Sci. Paris, Vol. 5 (1963).Google Scholar
  76. 76.
    C. Ehresmann, “Prolongements des catégories différentiables,” Cahiers Semin. Topol. et Geom. Différent., Fac. Sci. Paris, Vol. 6 (1964).Google Scholar
  77. 77.
    C. Ehresmann, “Catégories doubles et catégories structurées.” Compt. Rend. Acad. Sci., 256(6): 1198–1201 (1963).MathSciNetzbMATHGoogle Scholar
  78. 78.
    C. Ehresmann, “Catégorie double des quintettes; applications covariantes,” Compt. Rend. Acad. Sci., 256(9): 1891–1894 (1963).MathSciNetzbMATHGoogle Scholar
  79. 79.
    C. Ehresmann, “Catégories structurées d’operateurs,” Compt. Rend. Acad. Sci., 256(10): 2080–2083 (1963).MathSciNetzbMATHGoogle Scholar
  80. 80.
    C. Ehresmann, “Sous-structures et applications K-covariantes,” Compt. Rend. Acad. Sci., 256(11): 2280–2283 (1963).MathSciNetzbMATHGoogle Scholar
  81. 81.
    C. Ehresmann, “Structures quotients et catégories quotients,” Compt. Rend. Acad. Sci., 256(24): 5031–5034 (1963).MathSciNetzbMATHGoogle Scholar
  82. 82.
    C. Ehresmann, “Catégories structurées,” Ann. Sci. Ecole Norm. Supér., 80(4): 349–426 (1963).MathSciNetzbMATHGoogle Scholar
  83. 83.
    C. Ehresmann, “Groupoides sous-inductifs,” Ann. Inst. Fourier, 13(2): 1–60 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    C. Ehresmann, “Complétion des catégories ordonnées,” Compt. Rend. Acad. Sci., 257(26): 4110–4113 (1963).MathSciNetzbMATHGoogle Scholar
  85. 85.
    C. Ehresmann, “Catégories et structures: Extraits,” Cahiers Semin. Topol. et Géom. Différent., Fac. Sci. Paris, Vol. 6 (1964).Google Scholar
  86. 86.
    C. Ehresmann, “Structures quotients,” Comment. Math. Helv., 38(3): 219–242 (1964).MathSciNetzbMATHGoogle Scholar
  87. 87.
    C. Ehresmann, “Structures quotients,” Comment. Math. Helv., 38(4): 243–283 (1964).MathSciNetGoogle Scholar
  88. 88.
    C. Ehresmann, “Catégories ordonnées, holonomie et cohomologie,” Ann. Inst. Fourier, 14(1): 205–268 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    C. Ehresmann, “Complétion des catégories ordonnées,” Ann. Inst. Fourier, 14(2): 89–144 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    C. Ehresmann, “Sous-structures et catégories ordonnées,” Fundam. Math., 54(2): 211–228 (1964).MathSciNetzbMATHGoogle Scholar
  91. 91.
    C. Ehresmann, “Produit croisé des catégories,”Compt. Rend. Acad. Sci., 258(9): 2461–2464(1964).MathSciNetzbMATHGoogle Scholar
  92. 92.
    C. Ehresmann, “Completion des catégories sous-prélocales,” Compt. Rend. Acad. Sci., 259(4): 701–704 (1964).MathSciNetzbMATHGoogle Scholar
  93. 93.
    C. Ehresmann, “Expansion d’homomorphismes et foncteurs,” Compt. Rend. Acad. Sci., 259(7): 1372–1375 (1964).MathSciNetzbMATHGoogle Scholar
  94. 94.
    C. Ehresmann, “Sur une notion générale de cohomologie,” Compt. Rend. Acad. Sci., 259(13): 2050–2053 (1964).MathSciNetzbMATHGoogle Scholar
  95. 95.
    C. Ehresmann, “Catégories et structures,” Dunod, Paris (1965), 358 pp.Google Scholar
  96. 96.
    C. Ehresmann, “Structures quasiquotients,” Cahiers Semin. Topol. et Géom. Différent., Fac. Sci. Paris, Vol. 7, Oct.(1965).Google Scholar
  97. 97.
    C. Ehresmann, “Expansion générale des foncteurs,” Compt. Rend. Acad. Sci., 260(1): 30–33 (1965).MathSciNetzbMATHGoogle Scholar
  98. 98.
    C. Ehresmann, “Catégorie quotient d’une catégorie par une sous-catégorie,” Compt. Rend. Acad. Sci., 260(8): 2116–2119 (1965).MathSciNetzbMATHGoogle Scholar
  99. 99.
    C. Ehresmann, “Quasi-surjections et structures quasi-quotient,” Compt. Rend. Acad. Sci., 261(7): 1577–1580 (1965).MathSciNetzbMATHGoogle Scholar
  100. 100.
    C. Ehresmann, “Quasi-catégories structurées,” Compt. Rend. Acad. Sci., 261(9): 1932–1935(1965).MathSciNetzbMATHGoogle Scholar
  101. 101.
    C. Ehresmann, “Groupoides structurés quasi-quotient et quasicohomologie,” Compt. Rend. Acad. Sci., 261(22): 4583–4586 (1965).MathSciNetzbMATHGoogle Scholar
  102. 102.
    C. Ehresmann, “Expansion des systèmes des structures dominés,” Compt. Rend. Acad. Sci., AB262(1): A8–A11 (1966).MathSciNetGoogle Scholar
  103. 103.
    C. Ehresmann, “Adjonction des limites aux catégories structurées,” Compt. Rend. Acad. Sci., 263(19): A655–A658 (1966).MathSciNetGoogle Scholar
  104. 104.
    C. Ehresmann, “Quasi-élargissement d’un système des structures structurés,” Compt. Rend. Acad. Sci., 263(21): A762–A765 (1966).MathSciNetGoogle Scholar
  105. 105.
    C. Ehresmann, “Premier théorème d’expansion structurée,” Compt. Rend. Acad. Sci., 263(23):A863–A866 (1966).MathSciNetGoogle Scholar
  106. 106.
    C. Ehresmann, “Théorème de quasi-expansion régulière,” Compt. Rend. Acad. Sci., 264(2):A56–A59 (1967).MathSciNetGoogle Scholar
  107. 107.
    C. Ehresmann, “Problèmes universels relatifs aux catégories n-aires,” Compt. Rend. Acad. Sci., 264(6):A273–A276 (1967).MathSciNetGoogle Scholar
  108. 108.
    S. Eilenberg and J. C. Moore, “Adjoint functors and triples. III,” J. Math., 9(3): 381–398 (1965).MathSciNetzbMATHGoogle Scholar
  109. 109.
    D. B. A. Epstein, “Functors between tensored categories,” Invent. Math., 1(3): 221–228 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    M. Evrard, “Homologie dans les catégories nonabéliennes; exactitude dans C,” Compt. Rend. Acad. Sci., 260(3): 749–751 (1965).MathSciNetzbMATHGoogle Scholar
  111. 111.
    M. Evrard, “Homologie dans les catégories nonabéliennes; définition de rhomologie,” Compt. Rend. Acad. Sci., 260(4): 1049–1051 (1965).MathSciNetzbMATHGoogle Scholar
  112. 112.
    C. Faith, “A general Wedderburn theorem,” Bull. Am. Math. Soc, 73(1): 65–67 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    A. U. Fregoso, “Local categories,” Doctoral Dissertation, Indiana University, 1963, 59 pp. Dissertation Abstr., 25(1): 495 (1964).Google Scholar
  114. 114.
    A. Frei, “Objets libres dans une catégorie primitive et comultiplications,” Compt. Rend. Acad. Sci., AB262(8): A421–A424 (1966).MathSciNetGoogle Scholar
  115. 115.
    P. Freyd, “Relative homological algebra made absolute,” Proc. Nat. Acad. Sci. USA, 49(1): 19–20(1963).MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    P. Freyd, “Abelian categories: An introduction to the theory of functors,” Harper and Bros., New York (1964), 164 pp.zbMATHGoogle Scholar
  117. 117.
    P. Freyd, “Algebra-valued functors in general and tensor products in particular,” Colloq. Math., Vol. 14, pp. 89–106 (1964).MathSciNetGoogle Scholar
  118. 118.
    P. Gabriel, “Des catégories abéliennes,” Bull. Soc. Math. France, 90(3): 323–448 (1962).MathSciNetzbMATHGoogle Scholar
  119. 119.
    P. Gabriel and U. Oberst, “Spektralkategorien und reguläre Ringe im Von-Neu-mannschen Sinn,” Math. Z., 92(5):389–395 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    G. Gemignani, “Gruppi e cogruppi in una categoria,” Ann. Scuola Norm. Super. Pisa. Sci. Fis. e Mat., 20(1): 139–171 (1966).MathSciNetzbMATHGoogle Scholar
  121. 121.
    R. Goblot, “Foncteur de séparation,” Compt. Rend. Acad. Sci., AB262(19): A1034–A1036 (1966).MathSciNetGoogle Scholar
  122. 122.
    E. M. Goldberg, “Relations in categories,” Doctoral Dissertation, Columbia University, 1965, 77 pp. Dissertation Abstr., 26(5): 2775–2776 (1965).Google Scholar
  123. 123.
    J. W. Gray, “Sheaves with values in a category,” Topology, 3(1): 1–18 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  124. 124.
    M. Hacque, “Satellites des foncteurs limites projéctives et cohomologie abélienne des petites catégories,” Compt. Rend. Acad. Sci., 260(6): 1532–1535 (1965).MathSciNetzbMATHGoogle Scholar
  125. 125.
    M. Hasse, “Über Erzeugendensysteme schlichter Kategorien,” Wiss. Z. Techn. Univ. Dresden, 13(4): 1035–1036 (1964).MathSciNetzbMATHGoogle Scholar
  126. 126.
    M. Hasse and L. Michler, “Über die Einbettbarkeit von Kategorien in Gruppoide,” Math. Nachr., 25(3): 169–177 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    P. J. Hilton, “Note on free and direct products in general categories,” Bull. Soc. Math. Belg., 13(1–2): 38–49 (1961).MathSciNetzbMATHGoogle Scholar
  128. 128.
    P. J. Hilton and W. Ledermann, “Remark on the I.c.m. in a homological ring-oid,” Quart. J. Math., 11(44): 287–294 (1960).MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    M. Hocquemiller, “Probléme universel de catégorie,” Bol. Soc. Mat. São Paulo, 18(1–2): 49–55 [1963 (1966)].Google Scholar
  130. 130.
    H.-J. Hoehnke, “Einige Bemerkungen zur Einbettbarkeit von Kategorien in Gruppoide,” Math. Nachr., 25(3): 179–190 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    H.-J. Hoehnke, “Zur Theorie der Gruppoide. IX,” Monatsber. Dtsch. Akad. Wiss. Berlin, 5(7): 405–411 (1963).MathSciNetzbMATHGoogle Scholar
  132. 132.
    F. Hoffmann, “Über eine die Kategorie der Gruppen umfassende Kategorie,” Sitzsber. Bayer. Acad. Wiss. Math.-Naturwiss. Kl., 1960, Munich (1961), pp. 163–204.Google Scholar
  133. 133.
    P. J. Huber, “Homotopy theory in general categories,” Math. Ann., 144(5): 361–385(1961).MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    P. J. Huber, “Standard constructions in Abelian categories,” Math. Ann., 146(4): 321–325 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    M. Husek, “S-categories,” Comment. Math. Univ. Carolinae, 5(1): 37–46 (1964).MathSciNetzbMATHGoogle Scholar
  136. 136.
    M. Husek, “Remarks on reflections,” Comment. Math. Univ. Carolinae, 7(2): 249–253 (1966).MathSciNetzbMATHGoogle Scholar
  137. 137.
    J. R. Isbell, “Adequate subcategories,” Ill. J. Math., 4(4): 541–552 (1960).MathSciNetzbMATHGoogle Scholar
  138. 138.
    J. R. Isbell, “Two set-theoretical theorems in categories,” Fundam. Math., 53(1): 43–49(1963).MathSciNetzbMATHGoogle Scholar
  139. 139.
    J. R. Isbell, “Subobjects, adequacy, completeness, and categories of algebras,” Rozpr. Mat., No. 36, 33 pp (1964).MathSciNetGoogle Scholar
  140. 140.
    J. R. Isbell, “Natural sums and abelianizing,” Pacif. J. Math., 14(4): 1265–1281 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    E. J. Javier, “Categorias de semigrupos principales,” Rev. Mat. Hisp.-Amer., 24(6): 207–217 (1964).MathSciNetGoogle Scholar
  142. 142.
    E. J. Javier, “Una categoria de semigrupos,” Acta Salmanticensia, Ser. Cienc, 6(4): 79–88 (1965).Google Scholar
  143. 143.
    G. Joubert, “Extensions de foncteurs ordonnés,” Compt. Rend. Acad. Sci., 260(12): 3251–3254 (1965).MathSciNetzbMATHGoogle Scholar
  144. 144.
    G. Joubert, “Extensions des foncteurs ordonnés et applications,” Compt. Rend. Acad. Sci., 261(3): 623–626 (1965).MathSciNetzbMATHGoogle Scholar
  145. 145.
    M. Jurchescu and A. Lascu, “Morfisme stricte, categorii cantoriene, functori de completare,” Studii Si Cercetǎri Mat. Acad. RSR, 18(2): 219–234 (1966).MathSciNetzbMATHGoogle Scholar
  146. 146.
    P.-F. Jurie, “Sur quelques caractérisations des sommes amalgamées d’homo-morphismes bpp-éiens, “ Compt. Rend. Acad. Sci., 264(5):A217–A220 (1967).MathSciNetGoogle Scholar
  147. 147.
    L. Kauffman, “Categories,” Tech. Engng. News, 47(8): 41–43 (1966).Google Scholar
  148. 148.
    G. M. Kelly, “On the radical of a category,” J. Austral. Math. Soc, 4(3): 299–307 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  149. 149.
    G. M. Kelly, “Complete functors in homology. I. Chain maps and endomorphisms,” Proc. Cambridge Phil. Soc, 60(4): 721–735 (1964).zbMATHCrossRefGoogle Scholar
  150. 150.
    G. M. Kelly, “Complete functors in homology. II. The exact homology sequence,” Proc. Cambridge Phil. Soc, 60(4): 737–749 (1964).CrossRefGoogle Scholar
  151. 151.
    G. M. Kelly, “Tensor products in categories,” J. Algebra, 2(1): 15–37 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  152. 152.
    G. M. Kelly, “On MacLane’s conditions for coherence of natural associativities, commutativities, etc,” J. Algebra, 1(4): 397–402 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  153. 153.
    J. F. Kennison, “Reflective functors in general topology and elsewhere,” Trans. Am. Math. Soc, 118(6):303–315 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  154. 154.
    H. Kleisli, “Homotopy theory in Abelian categories,” Can. J. Math., 14(1): 139–169(1962).MathSciNetzbMATHCrossRefGoogle Scholar
  155. 155.
    H. Kleisli, “Every standard construction is induced by a pair of adjoint functors,” Proc. Am. Math. Soc, 16(3): 544–546 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    Lam Tsit-Yuen, “The category of Noetherian modules,” Proc Nat. Acad. Sci. USA, 55(5): 1038–1040 (1966).CrossRefGoogle Scholar
  157. 157.
    G. B. Lampton, Jr., “Abstract Abelian categories,” Doctoral Dissertation, University of South Carolina, 1964, 67 pp. Dissertation Abstr., 25(11): 6658 (1965).Google Scholar
  158. 158.
    M. L. Laplaza, “Nota sobre los epimortismos en la categoria de los anillos,” Rev. Mat. Hisp.-Amer., 26(3): 67–72 (1966).MathSciNetzbMATHGoogle Scholar
  159. 159.
    R. Lavendhomme, “La notion d’idéal dans la théorie des catégories,” Ann. Soc. Sci. Bruxelles, Ser. 1, 79(1): 5–25 (1965).MathSciNetGoogle Scholar
  160. 160.
    R. Lavendhomme, “Un plongement pleinement fidèle de la catégorie des groups. Application à l’algébrehomologique nonabelienne,” Bull. Soc. Math. Belg., 17(2): 153–185 (1965).MathSciNetzbMATHGoogle Scholar
  161. 161.
    F. W. Lawvere, “Functorial semantics of algebraic theories,” Proc Nat. Acad. Sci., 50(5): 869–872 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    F. W. Lawvere, “An elementary theory of the category of sets,” Proc. Nat. Acad. Sci. USA, 52(6): 1506–1511 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    P. Lecouturier, “Quelques propriétés des catégories hofmanniennes,” Ann. Soc. Sci. Bruxelles, Ser. 1, 80(1): 19–72 (1966).MathSciNetzbMATHGoogle Scholar
  164. 164.
    S. Legrand, “Construction des catégories ordonnées, projections de graphes multiplicatifs ordonnés,” Compt. Rend. Acad. Sci., 260(12): 3255–3258 (1965).MathSciNetzbMATHGoogle Scholar
  165. 165.
    S. Legrand, “Catégorie double projection d’un graphe multiplicatif double,” Compt. Rend. Acad. Sci., AB262(7): A381–A383 (1966).MathSciNetGoogle Scholar
  166. 166.
    J. B. Leicht, “On commutative squares,” Can. J. Math., 15(1): 59–79 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  167. 167.
    J. B. Leicht, “Über die elementaren Lemmata der homologischen Algebra in quasiexacten Kategorien,” Monatsh. Math., 68(3): 240–254 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  168. 168.
    J. Levy-Bruhl, “Sur les catégories ordonnées,” Compt. Rend. Acad. Sci., 258(6): 1669–1671 (1964).MathSciNetzbMATHGoogle Scholar
  169. 169.
    J. Levy-Bruhl, “Demi-groupe et catégorie modulaires,” Compt. Rend. Acad. Sci., 260(15): 4134–4136 (1965).MathSciNetGoogle Scholar
  170. 170.
    J. Levy-Bruhl, “Sur les notions d’image, noyau, coimage, conoyau,” Compt. Rend. Açad. Sci., 262(25): A1381–A1384 (1966).MathSciNetGoogle Scholar
  171. 171.
    F. E. J. Linton, “Autonomous categories and duality of functors,” J. Algebra, 2(3): 315–349 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  172. 172.
    S. MacLane, “Locally small categories and the foundations of set theory,” in: Infinitistic Methods, Pergamon Press, Oxford; Warszawa. P.W.N. (1961), pp. 25–43.Google Scholar
  173. 173.
    S. MacLane, “An algebra of additive relations,” Proc. Nat. Acad. Sci. USA, 47(7): 1043–1051 (1961).MathSciNetzbMATHCrossRefGoogle Scholar
  174. 174.
    S. MacLane, “Natural associativity and commutativity,” Rice Univ. Studies, 49(4): 28–46 (1963).MathSciNetzbMATHGoogle Scholar
  175. 175.
    S. MacLane, “Categorical algebra,” Bull. Am. Math. Soc, 71(1): 40–106 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  176. 176.
    J. M. Maranda, “Some remarks on limits in categories,” Can. Math. Bull., 5(2): 133–146 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  177. 177.
    J. M. Maranda, “Injective structures,” Trans. Am. Math. Soc, 110(1): 98–135 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  178. 178.
    J. M. Maranda, “Formal categories,” Can. J. Math., 17(5): 758–801 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  179. 179.
    J. M. Maranda, “Completions of modules and rings,” Trans. Roy. Soc. Canada, Sec. 1–3(3): 271–291 (1965).MathSciNetGoogle Scholar
  180. 180.
    W. Meier, “Beiträge zur algebraischen Homotopietheorie der Moduln,” Diss., Dokt. Math., Eidgenöss. Techn. Hochschule Zürich (1962), 54 pp.Google Scholar
  181. 181.
    J. Mersch., “Chasses sur les diagrammes des catégories abéliennes,” Bull. Soc Roy. Sci. Liége, 33(7–8): 411–450 (1964).MathSciNetzbMATHGoogle Scholar
  182. 182.
    J. Mersch, “Structures quotients,” Bull. Soc. Roy. Sci. Liège, 33(1–2): 45–58 (1964).MathSciNetzbMATHGoogle Scholar
  183. 183.
    J. Mersch, “Le problème du quotient dans les catégories,” Mem. Soc Roy. Sci. Liège, Vol. 11, No. 1 (1965).Google Scholar
  184. 184.
    B. Mitchell, Theory of Categories, Academic Press, New York (1965), 273 pp.zbMATHGoogle Scholar
  185. 185.
    B. Mitchell, “The full imbedding theorem,” Am. J. Math., 86(3): 619–637 (1964).zbMATHCrossRefGoogle Scholar
  186. 186.
    C. Nǎstǎsescu and N. Popescu, “Sur la structure des objets de certaines catégories abéliennes,” Compt. Rend. Acad. Sci., AB262(24): A1295–A1297 (1966).Google Scholar
  187. 187.
    Y. Nouazé, “Catégories localement de type fini et catégories localement noethériennes,” Compt. Rend. Acad. Sci., 257(4): 823–824 (1963).zbMATHGoogle Scholar
  188. 188.
    L. Oubina and J. Bosch, “Sous-jacence, union et intersection en catégories,” Compt. Rend. Acad. Sci., 260(9): 2389–2391 (1965).MathSciNetzbMATHGoogle Scholar
  189. 189.
    B. Pareigis, “Cohomology of groups in arbitrary categories,” Proc. Am. Math. Soc, 15(5): 803–819 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  190. 190.
    N. Popescu, “Elemente de teoria fasciculelor. I,” Studii Si Cercetari Mat. Acad. RSR, 18(2): 267–296 (1966).zbMATHGoogle Scholar
  191. 191.
    N. Popescu, “Elemente de teoria fasciculelor. II,” Studii Si Cercetari Mat. Acad. RSR, 18(3): 407–456 (1966).Google Scholar
  192. 192.
    N. Popescu and P. Gabriel, “Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes,” Compt. Rend. Acad. Sci., 258(17): 4188–4190(1964).Google Scholar
  193. 193.
    A. Pultr, “Concerning universal categories,” Comment. Math. Univ. Carolinae, 5(4): 227–239 (1964).MathSciNetzbMATHGoogle Scholar
  194. 194.
    R. Pupier, “Sur les décompositions de morphismes dans les catégories à sommes ou à produits fibres,” Compt. Rend. Acad. Sci., 258(26): 6317–6319 (1964).MathSciNetzbMATHGoogle Scholar
  195. 195.
    D. Puppe, “Korrespondenzen in abelschen Kategorien,” Math. Ann., 148(1): 1–30 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  196. 196.
    J. Riquet, “Categorisation de la notion des structures et des structures locales chez N. Bourbaki et C. Ehresmann. I,” Semin. P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot. Fac. Sci. Paris, 1960–1961, 14 Annee, Fasc. I, Paris (1963), pp. 5/01–5/32.Google Scholar
  197. 197.
    P. Robert, “Méthodes fonctionnelles sur l’axiomatique des systèmes de générateurs, des rangs, etc.,” Compt. Rend. Acad. Sci., 260(16): 4291–4294 (1965).zbMATHGoogle Scholar
  198. 198.
    P. Robert, “Méthodes fonctionnelles sur raxiomatique des systèmes de générateurs des rangs,” Compt. Rend. Acad. Sci., 260(18): 4661–4664 (1965).zbMATHGoogle Scholar
  199. 199.
    P. Robert, “Methodes fonctionnelles sur l’axiomatique des systèmes de générateurs, des rangs, etc.,” Compt. Rend. Acad. Sci., 260(23): 5983–5986 (1965).zbMATHGoogle Scholar
  200. 200.
    J.-E. Roos, “Introduction à l’étude de la distributivité des foncteurs lim par rapport aux lim dans des catégories des faisceaux (topos),” Compt. Rend. Acad. Sci. 259(5): 969–972 (1964).MathSciNetzbMATHGoogle Scholar
  201. 201.
    J.-E. Roos, “Sur la distributivité des foncteurs lim par rapport aux lim dans les catégories des faisceaux (topos),” Compt. Rend., 259(9): 1605–1608 (1964).MathSciNetzbMATHGoogle Scholar
  202. 202.
    J.-E. Roos, “Complément à l’étude de la distributivité des foncteurs lim par rapport aux lim dans les catégories des faisceaux (topos),” Compt. Rend. Acad. Sei., 259(11): 1801–1804 (1964).MathSciNetzbMATHGoogle Scholar
  203. 203.
    J.-E. Roos, “Caractérisation des catégories qui sont quotients des catégories des modules par des souscatégories bilocalisantes,” Compt. Rend. Acad. Sci., 261(23): 4954–4957 (1965).MathSciNetzbMATHGoogle Scholar
  204. 204.
    T. Rosinger, “Une extension de la notion de catégorie Eilenberg — MacLane,” Rev. Roumaine Math. Pures et Appl. (RPR), 9(9): 881–885 (1964).MathSciNetGoogle Scholar
  205. 205.
    T. Rosinger, “O extindere a notiunii de categorie in sens Eilenberg — MacLane,” Studii Si Cercetǎri Mat. Acad. RPR, 16(8): 997–999 (1964).MathSciNetzbMATHGoogle Scholar
  206. 206.
    A. Roux, “Objets injectifs et projectifs,” Cahiers Rhodaniens, No. 10, pp. 3/1–3/7(1961).Google Scholar
  207. 207.
    A. Roux, “Sur une équivalence des catégories abéliermes,” Compt. Rend. Acad. Sci., 258(23): 5566–5568 (1964).MathSciNetzbMATHGoogle Scholar
  208. 208.
    A. Roux, “Un théorème de plongement des catégories,” Compt. Rend. Acad. Sci., 258(19): 4646–4647 (1964).MathSciNetzbMATHGoogle Scholar
  209. 209.
    R. Rubio, “Sobre los fundamentos de la geometria diferencial,” Casop. Pestov. Mat., 89(3): 278–295 (1964).MathSciNetzbMATHGoogle Scholar
  210. 210.
    S. Salvioli and J. Bosch, “Sous-objets quotients et images en catégories,” Compt. Rend. Acad. Sci., 260(8): 2111–2113 (1965).MathSciNetzbMATHGoogle Scholar
  211. 211.
    Z. Semadeni, “Free and direct objects,” Bull. Am. Math. Soc, 69(1): 63–66 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  212. 212.
    Z. Semadeni, “Projectivity, injectivity, and duality,” Rozpr. Mat., No. 35, (1963).Google Scholar
  213. 213.
    Z. Semadeni, “Free objects in the theory of categories,” Colloq. Math., Vol. 14, pp. 107–110 (1964).MathSciNetGoogle Scholar
  214. 214.
    A. Solian, “A canonical decomposition of additive functors of modules,” Atti Accad. Naz. Lincei. Rend. CI. Sci. Fis., Mat. e Natur., 36(2): 129–135 (1964).MathSciNetzbMATHGoogle Scholar
  215. 215.
    A. Solian, “Foncteurs qui conservent les épimorphismes locaux,” Compt. Rend. Acad. Sci., 259(7): 1376–1379 (1964).MathSciNetzbMATHGoogle Scholar
  216. 216.
    A. Solian, “Foncteurs qui transforment les épimorphismes locaux en mono-morphismes locaux,” Rev. Roumaine Math. Pures et Appl., (RPR), 11(4): 401–410(1966).MathSciNetzbMATHGoogle Scholar
  217. 217.
    J. Sonner, “On the formal definition of categories,” Math. Z., 80(2): 163–176 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  218. 218.
    J. Sonner, “Universal and special problems,” Math. Z., 82(3): 200–211 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  219. 219.
    J. Sonner, “Universal solutions and adjoint homomorphisms,” Math. Z., 86(1): 14–20 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  220. 220.
    R. Stärk, “Nullsysteme in allgemeinen Kategorien,” Diss. Eidgenöss. Techn. Hochschule Zürich. Dokt. Math. Zürich (1963).Google Scholar
  221. 221.
    A. Suliński, “The Brown-McCoy radical in categories,” Fundam. Math., 59(1): 23–41 (1966).zbMATHGoogle Scholar
  222. 222.
    J. C. Taylor, “Weak families of maps,” Can. Math. Bull., 8(6): 771–781 (1965).zbMATHCrossRefGoogle Scholar
  223. 223.
    P. Tondeur, “Categories y functores,” Cursos y Semin. Mat. Univ. Buenos Aires, No. 21 (1965).Google Scholar
  224. 224.
    V. Trnkova, “Sum of categories with amalgamated subcategory,” Comment. Math. Univ. Carolinae, 6(4): 449–474 (1965).MathSciNetzbMATHGoogle Scholar
  225. 225.
    V. Trnkova, “Universal categories,” Comment. Math. Univ. Carolinae, 7(2): 143–206 (1966).MathSciNetzbMATHGoogle Scholar
  226. 226.
    R. Vazquez, “Seminario de algebra homologica. Gavillas con valores en categorias,” An. Inst. Mat. Univ. Nac. Autónoma México, Vol. 3, pp. 37–77 (1963).zbMATHGoogle Scholar
  227. 227.
    I. Vidav, “O kategorijah in funktorjih,” Obz. Mat. in Fiz., 11(1): 1–12 (1964).Google Scholar
  228. 228.
    W. Waliszewski, “Categories, groupoids, pseudogroups and analytical structures,” Rozpr. Mat., No. 45(1965).Google Scholar
  229. 229.
    B. Wegener, “Factorgruppoide und homomorphe Abbildungen bei Gruppoiden,” Wiss. Z. Techn. Hochschule Dresden, 10(3): 423–431 (1961).zbMATHGoogle Scholar
  230. 230.
    M. L. Wheat, “Radical subcategories,” Doctoral Dissertation, University of Kansas, 1964, 68 pp. Dissertation Abstr., 26(2): 1076–1077 (1965).Google Scholar
  231. 231.
    O. Wyler, “Weakly exact categories,” Arch. Math., 17(1): 9–19 (1966).MathSciNetzbMATHCrossRefGoogle Scholar
  232. 232.
    O. Wyler, “Direct sums in weakly exact categories,” Arch. Math., 17(3): 216–225(1966).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

There are no affiliations available

Personalised recommendations