Skip to main content

Blood Gas Transport and 2,3-DPG

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 191))

Abstract

Since the discovery of the sensitivity of oxygen-hemoglobin interaction to the concentration of red cell 2,3-diphosphoglycerate (Benesch and Benesch, 1967; Chanutin and Curnish, 1967), a great number of investigators have explored its biochemical, physiological and clinical ramifications. The following is a brief overview of this work, with particular emphasis upon the role of DPG in blood oxygen transport in health and disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apstein, C. S., Dennis, R. C., Briggs, L., Vogel, W. M., Frazer, J., and Valeri, C. R., 1984, Effect of red blood cell storage on cardiac performance: Improved myocardial oxygen delivery and function during constant flow coronary perfusion with low oxy-hemoglobin affinity human red blood cells in normothermic and hypothermic rabbit hearts, Office of Naval Research, Contract N0014–79-C-0168, Technical Report No. 83–01.

    Google Scholar 

  • Arturson, G., Garby, L., Robert, M. and Zaar, B., 1974, The O2 dissociation curve of normal human blood with special reference to the influence of physiological effector ligands, Scand. J. clin. Lab. Invest., 34:9.

    Article  PubMed  CAS  Google Scholar 

  • Astrup, P., Rørth, M., and Thorshauge, C., 1970, Dependency on acid-base status of oxyhemoglobin dissociation and 2,3-diphosphoglycerate level in human erythrocytes. II. In vivo studies, Scand. J. clin. Lab. Invest., 26:47.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, J. M., 1975, Structure and function of hemoglobin, Prog. Biophys. Molec. Biol., 29:225.

    CAS  Google Scholar 

  • Bauer, C., 1970, Reduction of the carbon dioxide affinity of human hemoglobin solutions by 2,3-diphosphoglycerate, Resp. Physiol., 10:10.

    Article  CAS  Google Scholar 

  • Bauer, C., Klocke, R. A., Kamp, D., and Forster, R. E., 1973, Effect of 2,3-diphosphoglycerate and H+ on the reaction of O2 and hemoglobin, Am. J. Physiol., 224:838.

    PubMed  CAS  Google Scholar 

  • Benesch, R. and Benesch, R. E., 1967, The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin, Biochem. Biophys. Res. Commun., 26:162.

    Article  PubMed  CAS  Google Scholar 

  • Chanutin, A. and Curnish, P., 1967, Effect of organic and inorganic phosphate on the oxygen equilibrium of human erythrocytes, Arch. Biochem. Biophys., 121:96.

    Article  PubMed  CAS  Google Scholar 

  • Deuticke, B., Duhm, J., and Dierkesmann, R.,1971, Maximal elevation of 2,3-diphosphoglycerate concentrations in human erythrocytes: Influence on glycolytic metabolism and intracellular pH, Pflugers Arch., 326:15.

    Article  PubMed  CAS  Google Scholar 

  • Duhm, J., 1971, Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes, Pflugers Arch., 326:341.

    Article  PubMed  CAS  Google Scholar 

  • Duhm, J., 1976, Influence of 2,3-diphosphoglycerate on the buffering properties of human blood. Role of the red cell membrane, Pflugers Arch., 363:61.

    Article  PubMed  CAS  Google Scholar 

  • Duhm, J. and Gerlach, E.,1971, On the mechanism of the hypoxia-induced increase of 2,3-diphosphoglycerate in erythrocytes, Pflugers Arch., 326:254.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, C. G., Potter, R. F., and Groom, A.C.,1983, The Krogh cylinder is not appropriate for modelling O2 transport in contracted skeletal muscle, Adv. Exper. Med. Biol., 159:253.

    Article  CAS  Google Scholar 

  • Harken, A. H., 1977, The surgical significance of the oxyhemoglobin dissociation curve, Surg. Gynec. Obstet., 144:935.

    PubMed  CAS  Google Scholar 

  • Hlastala, M. P. and Woodson, R. C., 1983, Bohr effect data for blood gas calculations, J. Appl. Physiol., 55:1002.

    PubMed  CAS  Google Scholar 

  • Honig, C. R., Gayeski, R. E. J. Federspiel, W., Clark, A. Jr., and Clark, P., 1984, Muscle O2 gradients from hemoglobin to cytochrome: new concepts, new complexities, Adv. Exper. Med. Biol., 169:23.

    Article  CAS  Google Scholar 

  • Kilmartin, J.V. and Rossi-Bernardi, L., 1973, Interaction of hemoglobin with hydrogen ions, carbon dioxide and organic phosphates, Physiol. Rev., 53:836.

    PubMed  CAS  Google Scholar 

  • Lichtman, M. A., Murphy, M. S., Whitbeck, A. A., and Kearney, E, A., 1974, Oxygen binding to haemoglobin in subjects with hypoproliferative anaemia, with and without chronic renal disease: Role of pH, Brit. J. Haemat., 27:439.

    Article  PubMed  CAS  Google Scholar 

  • Minakami, S. and Yoshikawa, H., 1966, Studies on erythrocyte glycolysis. III. The effects of active cation transport, pH and inorganic phosphate concentration on erythrocyte glycolysis, J. Biochem. (Tokyo), 59:145.

    CAS  Google Scholar 

  • Nylander, E., Lund, N. and Wranne, B., 1983, Effect of increased blood oxygen affinity on skeletal muscle surface oxygen pressure fields, J. Appl. Physiol., 54:99.

    PubMed  CAS  Google Scholar 

  • Ross, B. K. and Hlastala, M. P., 1981, Increased hemoglobin-oxygen affinity does not decrease skeletal muscle oxygen consumption, J. Appl. Physiol., 51:864.

    PubMed  CAS  Google Scholar 

  • Salhany, J. M., Eliot, R. S., and Mizukami, H., 1970, The effect of 2,3-diphosphoglycerate on the kinetics of deoxygenation of human hemoglobin, Biochem. Biophys. Res. Commun., 39:1052.

    Article  PubMed  CAS  Google Scholar 

  • Samaja, M., Mosca, A., Luzzana, M., Rossi-Bernardi, L., and Winslow, R., 1981, Equations and nomogram for the relationship of human blood p50 to 2,3-diphosphoglycerate, CO2 and H+, Clin. Chem., 27:1856.

    PubMed  CAS  Google Scholar 

  • Samaja, M. and Winslow, R., 1979, The separate effects of H+ and 2,3-DPG on the oxygen equilibrium curve of human blood, Brit. J. Haemat., 41:373.

    Article  PubMed  CAS  Google Scholar 

  • Siggaard-Andersen, O.., 1974, “The Acid-Base Status of the Blood,” Munskgaard, Copenhagen.

    Google Scholar 

  • Soulard, C. D., Teisscire, B. P., TeisScire, L. J., and Herigault, R. A., 1983, Consequences of an acute increase in p50 in anaesthetized guinea pigs, Respir. Physiol., 51:21.

    Article  PubMed  CAS  Google Scholar 

  • Valeri, C. R., 1984, Clinical importance of the oxygen transport function of preserved red blood cells, in: “Proc. 12th Katzir-Katchalsky meeting on oxygen transport by red blood cells”, Pergamon, Oxford, in press.

    Google Scholar 

  • Valeri, C. R. and Hirsch, N. M., 1969, Restoration in vivo of erythrocyte adenosine triphosphate, 2,3-diphosphoglycerate, potassium ion and sodium ion concentration following transfusion of acid-citrate-dextrose-stored human red blood cells, J. Lab. Clin. Med., 73:722.

    PubMed  CAS  Google Scholar 

  • Winslow, R. M., Samaja, M., Winslow, N. J«, Rossi-Bernardi, L., and Shrager, R. I., 1983, Simulation of continuous blood O2 equilibrium curve over physiological pH, DPG and pC02 range, J. Appl. Physiol., 54:524.

    Article  PubMed  CAS  Google Scholar 

  • Woodson, R. D. and Auerbach, S., 1982, Effect of increased oxygen affinity and anemia on cardiac output and its distribution, J. Appl. Physiol., 53:1299.

    PubMed  CAS  Google Scholar 

  • Woodson, R. D., Fitzpatrick, J. H. Jr., Costello, D. J., and Gilboe, D. D., 1982, Increased brain oxygen affinity decreases canine brain oxygen consumption, J. Lab. Clin. Med., 100:411.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Meldon, J.H. (1985). Blood Gas Transport and 2,3-DPG. In: Kreuzer, F., Cain, S.M., Turek, Z., Goldstick, T.K. (eds) Oxygen Transport to Tissue VII. Advances in Experimental Medicine and Biology, vol 191. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3291-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3291-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3293-0

  • Online ISBN: 978-1-4684-3291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics