Skip to main content

Diffusion with Chemical Reaction in Biological Systems

  • Chapter
Oxygen Transport to Tissue VII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 191))

  • 181 Accesses

Abstract

The interplay between diffusion and chemical transformation takes place in practically an infinite number of systems, either in nature or in the chemical industry. A variety of academic disciplines have actively studied the phenomena of diffusion with chemical reaction in order to understand the basic laws and to utilize them in predicting the behavior of systems or to design chemical processes which produce desirable species. Obviously, the study of mass transport and chemical transformation in biological systems is of great importance in the biological sciences. Likewise, the chemical reactions of molecules in industrial systems often involve significant diffusion effects and the interplay of the two effects needs to be understood to design efficient chemical systems. The laws that describe diffusion with chemical reaction are very general and apply to very disparate systems. As was pointed out by Weisz (1973) in an informative review article, discoveries made in various disciplines often were made independently of each other. The emergence of the interdisciplinary field of bioengineering has helped in bringing together knowledge developed in engineering, the pure and the biological sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aris, R., 1957, On shape factors for irregular particles — I. the steady state problem. Diffusion and reaction, Chem. Eng. Sci., 6, 262–268.

    Article  CAS  Google Scholar 

  • Aris, R., 1975, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Vol. 1. Clarendon Press, Oxford, England.

    Google Scholar 

  • Astarita, G., 1967, Mass Transfer with Chemical Reaction, Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Astarita, G., Savage, D.W., and Bisio, A., 1983, Gas Treating with Chemical Solvents. Wiley-Interscience, New York, U.S.A.

    Google Scholar 

  • Bailey, J.E., and Ollis, D.F., 1977, Biochemical Engineering Fundamentals, McGraw-Hill, New York, U.S.A.,

    Google Scholar 

  • Bauer, C., Gros, H., and Bartels, H., eds., 1980, Biophysics and Physiology of Carbon Dioxide, Springer, Berlin, West Germany.

    Google Scholar 

  • Bird, R.B., Stewart, W.E., and Lightfoot, E.N., 1960, Transport Phenomena. Wiley, New York, U.S.A.

    Google Scholar 

  • Bouwer, S., Hoofd, L., and Kreuzer, F., 1984, Private communications, University of Nijmegen, The Netherlands.

    Google Scholar 

  • Damköhler, G., 1937, Einfluss von Diffusion, Strömung und Warmte-transport auf die Ausbeute bei chemisch-technischen Reaktionen, in: Der Chemieingenieur., A. Eucken, M. Jacob, eds. Bd. 3, Teil, p. 359., Leipzig, Germany.

    Google Scholar 

  • Danckwerts, P.V., 1970, Gas-Liquid Reactions. McGraw-Hill, New York, U.S.A.

    Book  Google Scholar 

  • De Koning, J., Hoofd, L.J.C., and Kreuzer, F., 1981, Oxygen Transport and the function of myoglobin. Theoretical model and experiments in chicken gizzard smooth muscle. Pflügers Arch., 389, 211–217.

    Article  PubMed  Google Scholar 

  • Dorson, W.J., and Voorhees, M.E., 1976, Analysis of oxygen and carbon dioxide transfer in membrane lungs, in: Artificial Lungs for Acute Respiratory Failure. Theory and Practice. W.M. Zapol and J. Qvist, eds., p. 43, Academic Press, New York, U.S.A.

    Google Scholar 

  • Friedlander, S.K., and Keller, K.H., 1965, Mass transfer in reacting systems near equilibrium, Use of the affinity function. Chenu Eng. Sci., 20, 121–129.

    Article  CAS  Google Scholar 

  • Gallagher, P.M., Athayde, A.L., and Ivory, C.F., 1984, The facilitated transport of carbon dioxide through aqueous bicarbonate membranes. I. Formulation and solution. Unpublished manuscript, Notre Dame University, U.S.A..

    Google Scholar 

  • Goddard, J.D., 1977, Further applications of carrier-mediated transport theory, A survey. Chem. Eng. Sci., 32, 795–809.

    Article  CAS  Google Scholar 

  • Goddard, J.D., 1981a, Electric field effects in carrier-mediated ion transport, AIChE Symp. Ser., 77(202), 114–122.

    CAS  Google Scholar 

  • Goddard, J.D., 1981b, A model of facilitated transport in concentrated two-phase dispersions, Chem. Engr. Commun., 9, 345–361.

    Article  CAS  Google Scholar 

  • Goddard, J.D., Schultz, J.S., and Suchdeo, S.R., 1974, Facilitated transport via carrier-mediated diffusion in membranes: Part II. Mathematical aspects and analysis, AIChE Journ., 20, 625–645.

    Article  CAS  Google Scholar 

  • Gros, G., and Moll, W., 1974, Facilitated diffusion of CO2 across albumin solutions, J. Gen. Physio1., 64, 356–371.

    Article  CAS  Google Scholar 

  • Hatta, S., 1928, On the absorption velocity of gases by liquids. I. Absorption of carbon dioxide by potassium hydroxide solution, Techno1. Report Tohoku Imperial University (Japan), 8, 1–25.

    CAS  Google Scholar 

  • Hill, A.V., 1928, The diffusion of oxygen and lactic acid through tissues, Proc. Roy. Soc, B104, 39–96.

    Google Scholar 

  • Hoofd, L., and Kreuzer, F., 1981, The mathematical treatment of steady state diffusion of reacting species, AIChE Symp. Ser., 77(202), 123–129.

    CAS  Google Scholar 

  • Ivory, C.F., 1982, Forced facilitation in carrier-mediated transport. Paper 51f. AIChE Meeting, November 14–19, Los Angeles, California, U.S.A..

    Google Scholar 

  • Kawashiro, T., and Scheid, P., 1976, Measurement of Krogh’s diffusion constant of CO2 in respiring muscle at various CO2 levels: Evidence for facilitated diffusion, Pflügers Arch. 362, 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Klug, A., Kreuzer, F., and Roughton, F.J.W., 1956a, Simultaneous diffusion and chemical reaction in thin layers of haemoglobin solution. Proc. Roy. Soc. B., 145, 452–472.

    Article  CAS  Google Scholar 

  • Klug, A., Kreuzer, F., and Roughton, F.J.W., 1956b, The diffusion of oxygen in concentrated haemoglobin solutions, Helv. Physiol. Pharm. Acta., 14, 121–128.

    CAS  Google Scholar 

  • Kreuzer, F., 1970, Facilitated diffusion of oxygen and its possible significance: a review, Respir. Physiol., 9, 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Kreuzer, F., and Hoofd, L., 1984, Facilitated diffusion of O2 and CO2, in: Handbook of Physiology, Am. Physiol. Soc. Washington, D.C., U.S.A., in press.

    Google Scholar 

  • Kutchai, H., Jacquez, J.A., and Mather, F.J., 1970, Nonequilibrium facilitated oxygen transport in hemoglobin solution, Biophys J., 10, 38–54.

    Article  PubMed  CAS  Google Scholar 

  • Kutchai, H., and Staub, N.C., 1969, Steady-state, hemoglobin-facilitated O2 transport in human erythrocytes, J. Gen. Physio1., 53, 576–589.

    Article  CAS  Google Scholar 

  • Lightfoot, E.N., 1968, Low-order approximations for membrane blood oxygenators, AIChE J., 14, 669–670.

    Article  CAS  Google Scholar 

  • Longmuir, I.S., Forster, R.E., and Woo, C.-Y., 1966, Diffusion of carbon dioxide through thin layers of solution, Nature, 209, 393–394.

    Article  CAS  Google Scholar 

  • Meldon, J.H., De Koning, J., and Stroeve, P., 1978, Electrical potentials induced by CO2 gradients in protein solutions and their role in CO2 transport, Bioelectrochem. Bioenerg., 5, 77–87.

    Article  CAS  Google Scholar 

  • Meldon, J.H., and Kang, Y.-S., 1983, The transport of carbon dioxide in purified protein solutions, AIChE Symp. Ser., 79 (227), 36–42.

    CAS  Google Scholar 

  • Meldon, J.H., Stroeve, P., and Gregoire, C.E., 1982, Facilitated transport of carbon dioxide: A review, Chem. Eng. Commun., 16, 263–300.

    Article  CAS  Google Scholar 

  • Nernst, W., 1904, Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen, Z. Phys. Chem., 47, 52–79.

    CAS  Google Scholar 

  • Oomens, J.M.M., De Koning, J., and Stroeve, P., 1977, A comparison of oxygen transfer into hemoglobin solutions and whole blood flowing in rectangular channels, AIChE J., 23, 390–393.

    Article  CAS  Google Scholar 

  • Roughton, F.J.W., 1952, Diffusion and chemical reaction velocity in cylindrical and spherical systems of physiological interest, Proc. Roy. Soc. London B, 140, 203–229.

    Article  CAS  Google Scholar 

  • Ryan, D., Carbonell, R.G., and Whitaker, S., 1981, A theory of diffusion and reaction in porous media, AIChE Symp. Ser., 77 (202), 46–62.

    CAS  Google Scholar 

  • Sasidhar, V., Ruckenstein, E., 1983, Relaxation method for facilitated transport, J. Membr. Sci., 13, 67–84.

    Article  CAS  Google Scholar 

  • Scholander, P.F., 1960, Oxygen transport through hemoglobin solutions, Science, 131, 85–90.

    Article  Google Scholar 

  • Schultz, J.S., Goddard, J.D., Suchdeo, S.R., 1974, Facilitated transport via carrier-mediated diffusion in membranes. Part I. Mechanistic aspects, experimental systems and characteristic regimes, AIChE J., 20, 417–445.

    Article  CAS  Google Scholar 

  • Slattery, J.C., 1981, Momentum, Energy and Mass Transfer in Continua, Krieger, Huntington, N.Y., U.S.A..

    Google Scholar 

  • Smith, K.A., Meldon, J.H. and Colton, C.K., 1973, An analysis of carrier-facilitated transport, AIChE J., 19, 102–111.

    Article  CAS  Google Scholar 

  • Spaan, J.A.E., 1973, Transfer of oxygen into haemoglobin solution, Pflügers Arch. ges. Physiol., 342, 289–306.

    Article  CAS  Google Scholar 

  • Stroeve, P., 1984, Diffusion with Chemical Reaction in Two-Phase Heterogeneous Media, in: Advances in Transport Processes, Vol. Ill, p. 361–386, A.S. Mujumdar, R.A. Mashelkar, eds., Wiley Eastern, New Delhi, India.

    Google Scholar 

  • Stroeve, P., Smith, K.A., and Colton, C.K., 1976a, Facilitated diffusion of oxygen in red blood cell suspensions, Adv. Exptl. Med. and Biol., 75, 191–198.

    CAS  Google Scholar 

  • Stroeve, P., Smith, K.A., and Colton, C.K., 1976b, An analysis of carrier facilitated transport in heterogeneous media, AIChE J., 22, 1125–1132.

    Article  CAS  Google Scholar 

  • Stroeve, P., Colton, C.K., and Smith, K.A., 1976c, Steady state diffusion of oxygen in red blood cell and model suspensions, AIChE J., 22, 1133–1142.

    Article  CAS  Google Scholar 

  • Stroeve, P., and Ziegler, E.M., 1980, The transport of carbon dioxide in high molecular weight buffer solutions, Chem. Eng. Commun., 6, 81–103.

    Article  CAS  Google Scholar 

  • Stroeve, P., Ward, W.J., 1981, Transport with chemical reactions, AIChE Symp. Ser., 202, Vol. 77.

    Book  Google Scholar 

  • Thiele, E.W., 1939, Relation between catalytic activity and size of particle. Industrial Engr. Chem., 31, 916–920.

    Article  CAS  Google Scholar 

  • Weisz, P.B., 1973, Diffusion and chemical transformation. An interdisciplinary excursion, Science, 179, 433–440.

    Article  PubMed  CAS  Google Scholar 

  • Weisz, P.B., and Prater, C.D., 1954, Interpretation of measurements in experimental catalysis. Adv. Cata1ysis, 6, 143–207.

    Article  CAS  Google Scholar 

  • Whitaker, S., 1973, The transport equations for multi-phase systems, Chem. Engr. Sci., 28, 139–147.

    Article  CAS  Google Scholar 

  • Whitaker, S., 1983, Transport processes with heterogeneous reaction, 25th Conicet Anniversary Reactor Design Conference, Santa Fe, Argentina, August.

    Google Scholar 

  • Whitman, W.G., 1923, The two-film theory of absorption, Chem. And Met. Engr. 29, 147–153.

    Google Scholar 

  • Wittenberg, J.B., 1959, Oxygen transport — a new function proposed for myoglobin, Biol. Bull., 117, 402–403.

    Google Scholar 

  • Wittenberg, J.B., 1970, Myoglobin in oxygen entry into muscle, Physiol. Rev., 50, 559–636.

    PubMed  CAS  Google Scholar 

  • Wittenberg, B.A., Wittenberg, J.B., and Caldwell, P.R.B., 1975, Role of myoglobin in the oxygen supply to red skeletal muscle, J. Biol. Chem., 250, 9038–9043.

    PubMed  CAS  Google Scholar 

  • Wittenberg, J.B. and Wittenberg, B.A., 1981, Facilitated oxygen diffusion by oxygen carriers, in: Oxygen and Living Processes, D.L. Gilbert, ed., Springer-Verlag, New York, U.S.A..

    Google Scholar 

  • Zeldovitch, J.B., 1939, On the theory of reactions on powders and porous substances, Acta Phys.-chim. URSS, 10, 583–594.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Stroeve, P. (1985). Diffusion with Chemical Reaction in Biological Systems. In: Kreuzer, F., Cain, S.M., Turek, Z., Goldstick, T.K. (eds) Oxygen Transport to Tissue VII. Advances in Experimental Medicine and Biology, vol 191. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3291-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3291-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3293-0

  • Online ISBN: 978-1-4684-3291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics