Skip to main content

Skeletal and Cardiac Muscle Oxygenation

  • Chapter
Oxygen Transport to Tissue VII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 191))

Abstract

Tissue oxygenation is accomplished through a long chain of complex, interrelated factors. The end result is heterogeneity (in time and space) of local oxygen pressures (see e.g. Duling 1981, Longmuir 1981, Silver 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Block, E. H., Iberall, A. S. 1982. Toward a concept of the functional unit of mammalian skeletal muscle. Am J Physiol., 242: R411.

    Google Scholar 

  • Bourdeau-Martini, J., Honig, C. R. 1973. Control of coronary inter-capillary distance: effect of arterial pCO2 and pH. Micro-vasc Res., 6:286.

    Article  CAS  Google Scholar 

  • Damon, D. H., Duling B. R. 1984. Distribution of capillary blood flow in the microcirculation of the hamster: an in vivo study using epifluorescence microscopy. Microvasc Res., 27: 81.

    Article  PubMed  CAS  Google Scholar 

  • Duling, B. R. 1978. Oxygen, metabolism, and microcirculatory control. In: Microcirculation, Vol. II, pp. 401–29. Eds: Kaley, G, Altura, B. M. University Park Press, Baltimore.

    Google Scholar 

  • Duling, B. R. 1981. Coordination of microcirculatory function with oxygen demand in skeletal muscle. Adv Physiol Sci., 7:1.

    Google Scholar 

  • Eriksson, E., Myrhage, R. 1972. Microvascular dimensions and blood flow in skeletal muscle. Acta physiol scand., 86:211.

    Article  PubMed  CAS  Google Scholar 

  • Faber, J. E., Harris, P. D., Wiegman, D. L. 1982. Anesthetic depression of microcirculation, hemodynamics and respiration in decerebrated rats. Am J Physiol., 243:H837.

    PubMed  CAS  Google Scholar 

  • Grunewald, W. A., Sowa, W. 1977. Capillary structures and O2 supply to tissue. In: Reviews of Physiology, Biochemistry and Pharmacology, Vol. 77, pp 149–209. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Hammersen, F. 1968. The pattern of the terminal vascular bed and the ultrastructure of capillaries in skeletal muscle. In: Oxygen Transport in Blood and Tissue, pp 184–97. Ed: Lübbers, D. W. et al, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Honig, C. R., Bourdeau-Martini, J. 1974. Extravascular component of oxygen transport in normal and hypertrophied hearts with special reference to oxygen therapy. Circ Res., 34–35, suppl. II: 97.

    Google Scholar 

  • Hearse, D. J., Yellon, D. M. 1982. The three-dimensional geometry of regional myocardial ischemia: the role of the coronary microcirculation in determining patterns of injury. In: Microcirculation of the heart, pp 149–63. Eds., Tillmanns, H., Kubier, W., Zebe, H. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Jackson, W. F., Duling, B. R. 1983. The oxygen sensitivity of hamster cheek pouch arterioles. Circ Res., 53:515.

    Article  PubMed  CAS  Google Scholar 

  • Kanabus, E. W., Feldstein, C., Crawford, D. W. 1980. Excursion of vibrating microelectrodes in tissue. J Appl Physiol., 48:737.

    PubMed  CAS  Google Scholar 

  • Kirk, E. S., Honig, C. R. 1964. Non-uniform distribution of blood flow and gradients of oxygen tension within the heart. Am J Physiol., 207:661.

    PubMed  CAS  Google Scholar 

  • Kunze, K. 1969. Das Sauerstoffdruckfeld im normalen and pathologisch veränderten Muskel. Schriftenreihe Neurologie, Band 3. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • van der Laarse, A. 1978. On the multiple Polarographic measurement of myocardial oxygen tension. Ph.D.-dissertation, University of Amsterdam.

    Google Scholar 

  • Lindbom, L., Tuma, R. F., Arfors, K-E. 1980. Influence of oxygen on perfused capillary density and capillary red cell velocity in rabbit skeletal muscle. Microvasc Res., 19:197.

    Article  PubMed  CAS  Google Scholar 

  • Longmuir, I. S. 1981. Channels of oxygen transport from blood to mitochondria. Adv Physiol Sci., 25:19.

    CAS  Google Scholar 

  • Longnecker, D. E., Harris, P. D. 1980. Microcirculatory actions of general anesthetics. Fed Proc, 39:1580.

    Google Scholar 

  • Lund, N., Ödman, S., Lewis, D. H. 1980. Skeletal muscle oxygen pressure fields in rats. Acta anaesth scand., 24:155.

    Article  PubMed  CAS  Google Scholar 

  • Lund, N., Jorfeldt, L., Lewis, D. H. 1980. Skeletal muscle oxygen pressure fields in healthy human volunteers. Acta anaesth scand., 24:272.

    Article  PubMed  CAS  Google Scholar 

  • Moss, A. J. 1968. Intramyocardial oxygen tension. Cardiovasc Res., 3:314.

    Article  Google Scholar 

  • Nylander, E., Lund, N., Wranne, B. 1983. Effect of increased blood oxygen affinity on skeletal muscle surface oxygen pressure fields. J Appl Physiol., 54:99.

    PubMed  CAS  Google Scholar 

  • Plyley, M. J., Sutherland, G. J., Groom, A. C. 1976. Geometry of the capillary network in skeletal muscle. Microvasc Res., 11:161.

    Article  PubMed  CAS  Google Scholar 

  • Potter, R. F., Groom, A. C. 1983. Capillary diameter and geometry in cardiac and skeletal muscle studied by means of corrosion casts. Microvasc Res., 25:68.

    Article  PubMed  CAS  Google Scholar 

  • Saborowski, F., Kessler, M., Höper, J., Greitschus, F., Rath, K., Dickmans, H. A., Thiele, K. G. 1983. Skeletal muscle oxygen pressure in patients with chronic renal insufficiency. In: Determination of Tissue Oxygen Pressure in Patients, pp 79–84. Ed.; Ehrly, A. M. Pergamon Press, Oxford.

    Google Scholar 

  • Seyde, W. C. McGowan, L., Lund, N., Duling, B. R., Longnecker, D.E. Influences of pharmacological anesthesia or decerebration on central and regional hemodynamics in normovolemic and hemorrhaged rats. Submitted for publication.

    Google Scholar 

  • Silver, I. A., 1981. Heterogeneity in tissue oxygenation; systemic and local factors. Adv Physiol Sci., 25:67.

    Google Scholar 

  • Skolasinska, K., Harbig, K., Lübbers, D.W., Wodick, R., 1978, pO2 and microflow histograms of the beating heart in response to changes in arterial pO2. Basic Res Cardiol., 73:307.

    Article  PubMed  CAS  Google Scholar 

  • Steinhausen, M., Tillmanns, H., Thederan, H., 1978. Microcirculation of the epimyocardial layer of the heart. Pflügers Arch., 378:9.

    Article  PubMed  CAS  Google Scholar 

  • Thorborg, P., Malmqvist, L-Å, Lund, N. Surface oxygen pressure fields in skeletal muscle: dependence on arterial pO2-Submitted for publication.

    Google Scholar 

  • Turek, Z., Kreuzer, F., Hoofd, L. J. C., 1973, Advantage or disadvantage of a decrease of blood oxygen affinity for tissue oxygen supply at hypoxia. Pflügers Arch., 342:185.

    Article  PubMed  CAS  Google Scholar 

  • Vetterlein, F., dal Ri, H., Schmidt, G. 1982. Capillary density in rat myocardium during timed plasma staining. Am J Physiol., 242:H133.

    PubMed  CAS  Google Scholar 

  • Walfridsson, H., Lewis, D. H., Lund, N., Acute coronary occlusion: oxygen pressure in the border zone studied in the pig. Accepted for publication.

    Google Scholar 

  • Wiener, L., Santamore, W. P., Venkataswamy, A., Plzak, L., Tempieton, J. 1982. Postoperative monitoring of myocardial oxygen tension: experience in 51 coronary artery bypass patients. Clin Cardiol., 5:431.

    Article  PubMed  CAS  Google Scholar 

  • Wieringa, P. A., Spaan, J. A. E., Stassen, H. G., Laird, J. D., 1982. Heterogeneous flow distribution in a three dimensional network simulation of the myocardial microcirculation — a hypothesis. Microcirculation. 2(2): 195.

    Google Scholar 

  • Wilson, G. J., Mac Gregor, D. C., Holness, D. E., Lixfeld, W., Yasni, H., 1973, Mass spectrometry for measuring changes in intramyocardial pO2 and pCO2. Adv Exp Med Biol., 37A:547.

    PubMed  CAS  Google Scholar 

  • Wranne, B., Berlin, G., Jorfeldt, C., Lund, N., 1983, Tissue oxygenation and muscular substrate turnover in two subjects with high hemoglobin oxygen affinity. J Clin Invest., 72: 1376.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Lund, N. (1985). Skeletal and Cardiac Muscle Oxygenation. In: Kreuzer, F., Cain, S.M., Turek, Z., Goldstick, T.K. (eds) Oxygen Transport to Tissue VII. Advances in Experimental Medicine and Biology, vol 191. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3291-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3291-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3293-0

  • Online ISBN: 978-1-4684-3291-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics