Skip to main content

On the Mechanism of Renaturation of Proteins Containing Disulfide Bonds

  • Chapter
Protein Crosslinking

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 86A))

Abstract

The renaturation of bovine pancreatic ribonuclease A and hen egg white lysozyme from their reduced forms involves two statistical processes, pairing of half-cystine residues by oxidation and rearrangement of disulfide bonds by enzyme or thiol catalyzed sulfhydryl-disulfide interchange. The stability against sulfhydryl-disulfide interchange of the native or nativelike conformation thus attained, which could be a form containing three native disulfide bonds and one open disulfide bond, causes the system to accumulate the renatured enzyme. Thus, the native-like conformation is associated with the lowest free energy only in the late phase of folding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen, C.B. (1955). Studies on the structural basis of ribo-nuclease activity. Biochim. Biophys. Acta, 17, 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen, C.B. (1956). The limited digestion of ribonuclease with pepsin. J. Biol. Chem., 221, 405–412.

    PubMed  CAS  Google Scholar 

  • Anfinsen, C.B. (1967). The formation of the tertiary structure of proteins. Harvey Lectures, 61, 95–116.

    PubMed  CAS  Google Scholar 

  • Anfinsen, C.B. and Scheraga, H.A. (1975). Experimental and theoretical aspects of protein folding. Advan Prot. Chem., 29, 205–300.

    Article  CAS  Google Scholar 

  • Andria, G. and Taniuchi, H. (1971). Renaturation of randomly oxidized des-(119-124)-ribonuclease by disulfide interchange in the presence of the fragment, 105-124. Fed Proc, 30, 1288. The full account is in preparation.

    Google Scholar 

  • Acharya, S.A. and Taniuchi, H. (1976a). A study of renaturation of reduced hen egg white lysozyme: enzymically active intermediates formed during oxidation of the reduced protein. J. Biol. Chem., in press.

    Google Scholar 

  • Acharya, S.A. and Taniuchi, H. (1976b). The manuscript is in preparation.

    Google Scholar 

  • Arnone, A., Bier, C.J., Cotton, F.A., Day, V.W., Hazen, E.E., Jr., Richardson, D.C., Richardson, J.S. and, in part, A. Yonath (1971). A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus. I. Experimental procedures and chain tracing. J. Biol. Chem., 246, 2302–2316.

    PubMed  CAS  Google Scholar 

  • Blake, C.C.F., Koenig, D.F., Mair, G.A., North, A.C.T., Phillips, D.C. and Sarma, V.R. (1965). Structure of hen egg white lysozyme. A three-dimensional Fourier synthesis at 2 A resolution. Nature, 22, 757–761.

    Article  Google Scholar 

  • Bohnert, J.L. and Taniuchi, H. (1972). The examination of the presence of amide groups in glutamic acid and aspartic acid residues of staphylococcal nuclease (Foggi strain). J. Biol. Chem., 247, 4557–4560.

    PubMed  CAS  Google Scholar 

  • Canfield, R.E. and Liu, A.K. (1965). The disulfide bonds of egg white lysozyme (Muramidase). J. Biol. Chem., 240, 1997–2002.

    Google Scholar 

  • Cone, J.L., Cusumano, C.L., Taniuchi, H. and Anfinsen, C.B. (1971). Staphylococcal nuclease (Foggi strain). II. The amino acid sequence. J. Biol. Chem., 246, 3103–3110.

    PubMed  CAS  Google Scholar 

  • Creighton, T.E. (1974). The single-disulfide intermediates in the refolding of reduced pancreatic trypsin inhibitor. J. Mol. Biol. 87., 603–624.

    Article  PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., Fuchs, S., and Anfinsen, C.B. (1967). The binding of nucleotides and calcium to the extracellular nuclease of Staphylococcus aureus: studies by gel filtration. J. Biol. Chem., 242, 3063–3067.

    PubMed  CAS  Google Scholar 

  • Epstein, C.J., Goldberger, R.F. and Anfinsen, C.B. (1963). Genetic control of tertiary protein structure: studies with model systems. Cold Spring Harbor Symposia on Quant. Biol., 28, 439–449.

    Article  CAS  Google Scholar 

  • Epstein, H.F., Schechter, A.N., Chen, R.F. and Anfinsen, C.B. (1971). Folding of staphylococcal nuclease: kinetic studies of two processes in acid denaturation. J. Mol. Biol., 60, 499–508.

    Article  PubMed  CAS  Google Scholar 

  • Givol, D., Goldberger, R.F. and Anfinsen, C.B. (1964). Oxidation and disulfide interchange in the reactivation of reduced ribonuclease. J. Biol. Chem., 239, 3114–3116.

    CAS  Google Scholar 

  • Gutte, B., Lin, M.C., Caldi, D.G. and Merrifield, R.B. (1972). Reactivation of des(119-, 120-, or 121-124) ribonuclease A by mixture with synthetic COOH-terminal peptides of varying lengths, J. Biol. Chem., 247, 4763–4767.

    PubMed  CAS  Google Scholar 

  • Harrington, W.F. and Sela, M. (1959). A comparison of the physical chemical properties of oxidized and reduced alkylated ribonuclease. Biochim. Biophys. Acta, 31, 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Hantgan, R.R., Hammes, G.G. and Scheraga, H.A. (1974). Pathways of folding of reduced bovine pancreatic ribonuclease. Biochemistry, 13, 3421–3431.

    Article  PubMed  CAS  Google Scholar 

  • Habor, E. and Anfinsen, C.B. (1961). Regeneration of enzymic activity by air oxidation of reduced subtilisin-modified ribonuclease. J. Biol. Chem., 236, 422–424.

    Google Scholar 

  • Hopfield, J.J. (1973). Relation between structure, co-operativity and spectra in a model of hemoglobin action. J. Mol. Biol., 77, 207–222.

    Article  PubMed  CAS  Google Scholar 

  • Karplus, M. and Weaver, D.L. (1976). Protein-folding dynamics. Nature, 260, 404–406.

    Article  PubMed  CAS  Google Scholar 

  • Kartha, G., Bello, J. and Harker, D. (1967). Tertiary structure of ribonuclease. Nature, 213, 862–865.

    Article  PubMed  CAS  Google Scholar 

  • Kato, I. and Anfinsen, C.B. (1969). On the stabilization of ribonuclease S-protein by ribonuclease S-peptide. J. Biol. Chem. 244, 1004–1007.

    PubMed  CAS  Google Scholar 

  • Koshland, D.E. (1970). The molecular basis for enzyme regulation. “The Enzymes” P.D. Boyer, ed., Academic Press, New York, Vol. 1, pp. 341–396.

    Google Scholar 

  • Light, A., Taniuchi, H. and Chen, R.F. (1974). A kinetic study of the complementation of fragments of staphylococcal nuclease. J. Biol. Chem., 249, 2285–2293.

    PubMed  CAS  Google Scholar 

  • Lin, M.C. (1970). The structural roles of amino acid residues near the carboxyl terminus of bovine pancreatic ribonuclease A. J. Biol. Chem., 245, 6726–6731.

    PubMed  CAS  Google Scholar 

  • Markus, G., Barnard, E.A., Castellani, B.A. and Saunders, D. (1968). Ligand-induced conformational changes in ribonuclease. J. Biol. Chem., 243, 4070–4076.

    PubMed  CAS  Google Scholar 

  • Ottesen, M. and Stracher, A. (1960). Deuterium exchange of subtilisin-modified ribonuclease and pepsin-inactivated ribonuclease. Compt.-rend. Lab. Carlsberg. Ser. Chim., 31, 457–467.

    CAS  Google Scholar 

  • Parikh, I., Corley, L., and Anfinsen, C.B. (1971). Semisynthetic analogues of an enzymically active complex formed between two overlapping fragments of staphylococcal nuclease. J. Biol. Chem., 246, 7392–7397.

    PubMed  CAS  Google Scholar 

  • Parker, D.S., Davis, A. and Taniuchi, H. (1975). Determination of the difference in energy between two alternative enzymically active structures formed by two overlapping fragments of staphylococcal nuclease. Fed. Proc. 34, 597.

    Google Scholar 

  • Phillips, D.C. (1967). The hen egg-white lysozyme molecule. Proc. Nat. Acad. Sci. U.S.A., 57, 484–495.

    Article  CAS  Google Scholar 

  • Richards, P.M. and Vithayathil, P.J. (1959). The preparation of the subtilisin-modified ribonuclease and the separation of the peptide and protein components. J. Biol. Chem., 234, 1459–1465.

    PubMed  CAS  Google Scholar 

  • Richards, F.M. and Wyckoff, H.W. (1971). Bovine pancreatic ribonuclease. “The Enzymes”, P.D. Boyer, ed., Academic Press, New York, Vol. 4, pp. 647–806.

    Google Scholar 

  • Ristow, S.S. and Wetlaufer, D.B. (1973). Evidence for nucleation in the folding of reduced hen egg lysozyme. Biochem. Biophys. Research Commun., 39, 544–550.

    Article  Google Scholar 

  • Rose, G.D., Winters, R.H. and Wetlaufer, D.B. (1976) A testable model for protein folding. FEBS Letters, 63, 10–16.

    Article  PubMed  CAS  Google Scholar 

  • Sela, M. and Anfinsen, C.B. (1957). Some spectrophotometric and Polarimetric experiments with ribonuclease. Biochim. Biophys. Acta, 24, 229–235.

    Article  PubMed  CAS  Google Scholar 

  • Tanford, C. (1968). Protein denaturation. Advan. Protein. Chem., 23, 122–282.

    Google Scholar 

  • Taniuchi, H. and Anfinsen, C.B. (1968). Steps in the formation of active derivatives of staphylococcal nuclease during trypsin digestion. J. Biol. Chem., 243, 4778–4786.

    PubMed  CAS  Google Scholar 

  • Taniuchi, H. (1970). Formation of randomly paired disulfide bonds in des-(121–124)-ribonuclease after reduction and reoxidation. J. Biol. Chem., 245, 5459–5468.

    PubMed  CAS  Google Scholar 

  • Taniuchi, H. and Anfinsen, C.B. (1971). Simultaneous formation of two alternative enzymically active structures by complementation of two overlapping fragments of staphylococcal nuclease. J. Biol. Chem., 246, 2291–2301.

    PubMed  CAS  Google Scholar 

  • Taniuchi, H., Davies, D.R. and Anfinsen, C.B. (1972). A comparison of the X-ray diffraction patterns of crystals of reconstituted Nuclease-T and of native staphylococcal nuclease. J. Biol. Chem., 247, 3362–3364.

    PubMed  CAS  Google Scholar 

  • Taniuchi, H. and Bohnert, J.L. (1973). Regulation of the complementation of two overlapping fragments of stpahylococcal nuclease. Fed. Proc., 32, 458.

    Google Scholar 

  • Taniuchi, H. (1973). The dynamic equilibrium of folding and unfolding of Nuclease-T’. J. Biol. Chem., 248, 5164–5174.

    PubMed  CAS  Google Scholar 

  • Taniuchi, H. and Bohnert, J.L. (1975). The mechanism of stabilization of the structure of Nuclease-T’ by binding of ligands. J. Biol. Chem., 250, 2388–2394.

    PubMed  CAS  Google Scholar 

  • Taniuchi, H., Parker, D.S. and Bohnert, J.L. (1976). A study of equilibration of the system involving two alternative, enzymically active complementing structures simultaneously formed from two overlapping fragments of staphylococcal nuclease. J. Biol. Chem., in press.

    Google Scholar 

  • Venetianer, P., and Straub, F.B. (1964). The mechanism of action of the ribonuclease-reactivating enzyme. Biochim. Biophys. Acta, 89, 189–190.

    PubMed  CAS  Google Scholar 

  • Watson, J.D. (1976). “Molecular Biology of the Gene.” 3rd Edition, W.A. Benjamin, Inc., New York.

    Google Scholar 

  • Wyckoff, H.W., Hardman, K.D., Allewell, N.M., Inagami, T., Johnson, L.N. and Richards, F.M. (1967). The structure of ribonuclease-S at 3.5 A resolution. J. Biol. Chem., 242, 3984–3988.

    PubMed  CAS  Google Scholar 

  • Wyman, J., Jr. (1964). Linked functions and reciprocal effects in hemoglobin: a second look. Advan. Prot. Chem., 19, 224–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Plenum Press, New York

About this chapter

Cite this chapter

Taniuchi, H., Acharya, A.S., Andria, G., Parker, D.S. (1977). On the Mechanism of Renaturation of Proteins Containing Disulfide Bonds. In: Friedman, M. (eds) Protein Crosslinking. Advances in Experimental Medicine and Biology, vol 86A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3282-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3282-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3284-8

  • Online ISBN: 978-1-4684-3282-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics